17 resultados para Composite models of particles
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The research activity carried out during the PhD course was focused on the development of mathematical models of some cognitive processes and their validation by means of data present in literature, with a double aim: i) to achieve a better interpretation and explanation of the great amount of data obtained on these processes from different methodologies (electrophysiological recordings on animals, neuropsychological, psychophysical and neuroimaging studies in humans), ii) to exploit model predictions and results to guide future research and experiments. In particular, the research activity has been focused on two different projects: 1) the first one concerns the development of neural oscillators networks, in order to investigate the mechanisms of synchronization of the neural oscillatory activity during cognitive processes, such as object recognition, memory, language, attention; 2) the second one concerns the mathematical modelling of multisensory integration processes (e.g. visual-acoustic), which occur in several cortical and subcortical regions (in particular in a subcortical structure named Superior Colliculus (SC)), and which are fundamental for orienting motor and attentive responses to external world stimuli. This activity has been realized in collaboration with the Center for Studies and Researches in Cognitive Neuroscience of the University of Bologna (in Cesena) and the Department of Neurobiology and Anatomy of the Wake Forest University School of Medicine (NC, USA). PART 1. Objects representation in a number of cognitive functions, like perception and recognition, foresees distribute processes in different cortical areas. One of the main neurophysiological question concerns how the correlation between these disparate areas is realized, in order to succeed in grouping together the characteristics of the same object (binding problem) and in maintaining segregated the properties belonging to different objects simultaneously present (segmentation problem). Different theories have been proposed to address these questions (Barlow, 1972). One of the most influential theory is the so called “assembly coding”, postulated by Singer (2003), according to which 1) an object is well described by a few fundamental properties, processing in different and distributed cortical areas; 2) the recognition of the object would be realized by means of the simultaneously activation of the cortical areas representing its different features; 3) groups of properties belonging to different objects would be kept separated in the time domain. In Chapter 1.1 and in Chapter 1.2 we present two neural network models for object recognition, based on the “assembly coding” hypothesis. These models are networks of Wilson-Cowan oscillators which exploit: i) two high-level “Gestalt Rules” (the similarity and previous knowledge rules), to realize the functional link between elements of different cortical areas representing properties of the same object (binding problem); 2) the synchronization of the neural oscillatory activity in the γ-band (30-100Hz), to segregate in time the representations of different objects simultaneously present (segmentation problem). These models are able to recognize and reconstruct multiple simultaneous external objects, even in difficult case (some wrong or lacking features, shared features, superimposed noise). In Chapter 1.3 the previous models are extended to realize a semantic memory, in which sensory-motor representations of objects are linked with words. To this aim, the network, previously developed, devoted to the representation of objects as a collection of sensory-motor features, is reciprocally linked with a second network devoted to the representation of words (lexical network) Synapses linking the two networks are trained via a time-dependent Hebbian rule, during a training period in which individual objects are presented together with the corresponding words. Simulation results demonstrate that, during the retrieval phase, the network can deal with the simultaneous presence of objects (from sensory-motor inputs) and words (from linguistic inputs), can correctly associate objects with words and segment objects even in the presence of incomplete information. Moreover, the network can realize some semantic links among words representing objects with some shared features. These results support the idea that semantic memory can be described as an integrated process, whose content is retrieved by the co-activation of different multimodal regions. In perspective, extended versions of this model may be used to test conceptual theories, and to provide a quantitative assessment of existing data (for instance concerning patients with neural deficits). PART 2. The ability of the brain to integrate information from different sensory channels is fundamental to perception of the external world (Stein et al, 1993). It is well documented that a number of extraprimary areas have neurons capable of such a task; one of the best known of these is the superior colliculus (SC). This midbrain structure receives auditory, visual and somatosensory inputs from different subcortical and cortical areas, and is involved in the control of orientation to external events (Wallace et al, 1993). SC neurons respond to each of these sensory inputs separately, but is also capable of integrating them (Stein et al, 1993) so that the response to the combined multisensory stimuli is greater than that to the individual component stimuli (enhancement). This enhancement is proportionately greater if the modality-specific paired stimuli are weaker (the principle of inverse effectiveness). Several studies have shown that the capability of SC neurons to engage in multisensory integration requires inputs from cortex; primarily the anterior ectosylvian sulcus (AES), but also the rostral lateral suprasylvian sulcus (rLS). If these cortical inputs are deactivated the response of SC neurons to cross-modal stimulation is no different from that evoked by the most effective of its individual component stimuli (Jiang et al 2001). This phenomenon can be better understood through mathematical models. The use of mathematical models and neural networks can place the mass of data that has been accumulated about this phenomenon and its underlying circuitry into a coherent theoretical structure. In Chapter 2.1 a simple neural network model of this structure is presented; this model is able to reproduce a large number of SC behaviours like multisensory enhancement, multisensory and unisensory depression, inverse effectiveness. In Chapter 2.2 this model was improved by incorporating more neurophysiological knowledge about the neural circuitry underlying SC multisensory integration, in order to suggest possible physiological mechanisms through which it is effected. This endeavour was realized in collaboration with Professor B.E. Stein and Doctor B. Rowland during the 6 months-period spent at the Department of Neurobiology and Anatomy of the Wake Forest University School of Medicine (NC, USA), within the Marco Polo Project. The model includes four distinct unisensory areas that are devoted to a topological representation of external stimuli. Two of them represent subregions of the AES (i.e., FAES, an auditory area, and AEV, a visual area) and send descending inputs to the ipsilateral SC; the other two represent subcortical areas (one auditory and one visual) projecting ascending inputs to the same SC. Different competitive mechanisms, realized by means of population of interneurons, are used in the model to reproduce the different behaviour of SC neurons in conditions of cortical activation and deactivation. The model, with a single set of parameters, is able to mimic the behaviour of SC multisensory neurons in response to very different stimulus conditions (multisensory enhancement, inverse effectiveness, within- and cross-modal suppression of spatially disparate stimuli), with cortex functional and cortex deactivated, and with a particular type of membrane receptors (NMDA receptors) active or inhibited. All these results agree with the data reported in Jiang et al. (2001) and in Binns and Salt (1996). The model suggests that non-linearities in neural responses and synaptic (excitatory and inhibitory) connections can explain the fundamental aspects of multisensory integration, and provides a biologically plausible hypothesis about the underlying circuitry.
Resumo:
In the last years of research, I focused my studies on different physiological problems. Together with my supervisors, I developed/improved different mathematical models in order to create valid tools useful for a better understanding of important clinical issues. The aim of all this work is to develop tools for learning and understanding cardiac and cerebrovascular physiology as well as pathology, generating research questions and developing clinical decision support systems useful for intensive care unit patients. I. ICP-model Designed for Medical Education We developed a comprehensive cerebral blood flow and intracranial pressure model to simulate and study the complex interactions in cerebrovascular dynamics caused by multiple simultaneous alterations, including normal and abnormal functional states of auto-regulation of the brain. Individual published equations (derived from prior animal and human studies) were implemented into a comprehensive simulation program. Included in the normal physiological modelling was: intracranial pressure, cerebral blood flow, blood pressure, and carbon dioxide (CO2) partial pressure. We also added external and pathological perturbations, such as head up position and intracranial haemorrhage. The model performed clinically realistically given inputs of published traumatized patients, and cases encountered by clinicians. The pulsatile nature of the output graphics was easy for clinicians to interpret. The manoeuvres simulated include changes of basic physiological inputs (e.g. blood pressure, central venous pressure, CO2 tension, head up position, and respiratory effects on vascular pressures) as well as pathological inputs (e.g. acute intracranial bleeding, and obstruction of cerebrospinal outflow). Based on the results, we believe the model would be useful to teach complex relationships of brain haemodynamics and study clinical research questions such as the optimal head-up position, the effects of intracranial haemorrhage on cerebral haemodynamics, as well as the best CO2 concentration to reach the optimal compromise between intracranial pressure and perfusion. We believe this model would be useful for both beginners and advanced learners. It could be used by practicing clinicians to model individual patients (entering the effects of needed clinical manipulations, and then running the model to test for optimal combinations of therapeutic manoeuvres). II. A Heterogeneous Cerebrovascular Mathematical Model Cerebrovascular pathologies are extremely complex, due to the multitude of factors acting simultaneously on cerebral haemodynamics. In this work, the mathematical model of cerebral haemodynamics and intracranial pressure dynamics, described in the point I, is extended to account for heterogeneity in cerebral blood flow. The model includes the Circle of Willis, six regional districts independently regulated by autoregulation and CO2 reactivity, distal cortical anastomoses, venous circulation, the cerebrospinal fluid circulation, and the intracranial pressure-volume relationship. Results agree with data in the literature and highlight the existence of a monotonic relationship between transient hyperemic response and the autoregulation gain. During unilateral internal carotid artery stenosis, local blood flow regulation is progressively lost in the ipsilateral territory with the presence of a steal phenomenon, while the anterior communicating artery plays the major role to redistribute the available blood flow. Conversely, distal collateral circulation plays a major role during unilateral occlusion of the middle cerebral artery. In conclusion, the model is able to reproduce several different pathological conditions characterized by heterogeneity in cerebrovascular haemodynamics and can not only explain generalized results in terms of physiological mechanisms involved, but also, by individualizing parameters, may represent a valuable tool to help with difficult clinical decisions. III. Effect of Cushing Response on Systemic Arterial Pressure. During cerebral hypoxic conditions, the sympathetic system causes an increase in arterial pressure (Cushing response), creating a link between the cerebral and the systemic circulation. This work investigates the complex relationships among cerebrovascular dynamics, intracranial pressure, Cushing response, and short-term systemic regulation, during plateau waves, by means of an original mathematical model. The model incorporates the pulsating heart, the pulmonary circulation and the systemic circulation, with an accurate description of the cerebral circulation and the intracranial pressure dynamics (same model as in the first paragraph). Various regulatory mechanisms are included: cerebral autoregulation, local blood flow control by oxygen (O2) and/or CO2 changes, sympathetic and vagal regulation of cardiovascular parameters by several reflex mechanisms (chemoreceptors, lung-stretch receptors, baroreceptors). The Cushing response has been described assuming a dramatic increase in sympathetic activity to vessels during a fall in brain O2 delivery. With this assumption, the model is able to simulate the cardiovascular effects experimentally observed when intracranial pressure is artificially elevated and maintained at constant level (arterial pressure increase and bradicardia). According to the model, these effects arise from the interaction between the Cushing response and the baroreflex response (secondary to arterial pressure increase). Then, patients with severe head injury have been simulated by reducing intracranial compliance and cerebrospinal fluid reabsorption. With these changes, oscillations with plateau waves developed. In these conditions, model results indicate that the Cushing response may have both positive effects, reducing the duration of the plateau phase via an increase in cerebral perfusion pressure, and negative effects, increasing the intracranial pressure plateau level, with a risk of greater compression of the cerebral vessels. This model may be of value to assist clinicians in finding the balance between clinical benefits of the Cushing response and its shortcomings. IV. Comprehensive Cardiopulmonary Simulation Model for the Analysis of Hypercapnic Respiratory Failure We developed a new comprehensive cardiopulmonary model that takes into account the mutual interactions between the cardiovascular and the respiratory systems along with their short-term regulatory mechanisms. The model includes the heart, systemic and pulmonary circulations, lung mechanics, gas exchange and transport equations, and cardio-ventilatory control. Results show good agreement with published patient data in case of normoxic and hyperoxic hypercapnia simulations. In particular, simulations predict a moderate increase in mean systemic arterial pressure and heart rate, with almost no change in cardiac output, paralleled by a relevant increase in minute ventilation, tidal volume and respiratory rate. The model can represent a valid tool for clinical practice and medical research, providing an alternative way to experience-based clinical decisions. In conclusion, models are not only capable of summarizing current knowledge, but also identifying missing knowledge. In the former case they can serve as training aids for teaching the operation of complex systems, especially if the model can be used to demonstrate the outcome of experiments. In the latter case they generate experiments to be performed to gather the missing data.
Resumo:
The topic of my Ph.D. thesis is the finite element modeling of coseismic deformation imaged by DInSAR and GPS data. I developed a method to calculate synthetic Green functions with finite element models (FEMs) and then use linear inversion methods to determine the slip distribution on the fault plane. The method is applied to the 2009 L’Aquila Earthquake (Italy) and to the 2008 Wenchuan earthquake (China). I focus on the influence of rheological features of the earth's crust by implementing seismic tomographic data and the influence of topography by implementing Digital Elevation Models (DEM) layers on the FEMs. Results for the L’Aquila earthquake highlight the non-negligible influence of the medium structure: homogeneous and heterogeneous models show discrepancies up to 20% in the fault slip distribution values. Furthermore, in the heterogeneous models a new area of slip appears above the hypocenter. Regarding the 2008 Wenchuan earthquake, the very steep topographic relief of Longmen Shan Range is implemented in my FE model. A large number of DEM layers corresponding to East China is used to achieve the complete coverage of the FE model. My objective was to explore the influence of the topography on the retrieved coseismic slip distribution. The inversion results reveals significant differences between the flat and topographic model. Thus, the flat models frequently adopted are inappropriate to represent the earth surface topographic features and especially in the case of the 2008 Wenchuan earthquake.
Resumo:
The goal of this dissertation is to use statistical tools to analyze specific financial risks that have played dominant roles in the US financial crisis of 2008-2009. The first risk relates to the level of aggregate stress in the financial markets. I estimate the impact of financial stress on economic activity and monetary policy using structural VAR analysis. The second set of risks concerns the US housing market. There are in fact two prominent risks associated with a US mortgage, as borrowers can both prepay or default on a mortgage. I test the existence of unobservable heterogeneity in the borrower's decision to default or prepay on his mortgage by estimating a multinomial logit model with borrower-specific random coefficients.
Resumo:
The aim of this Thesis is to investigate the effect of heterogeneities within the subducting plate on the dynamics of subduction. In particular, I study the motion of the trench for oceanic and continental subduction, first, separately, and, then, together in the same system to understand how they interact. The understanding of these features is fundamental to reconstruct the evolution of complex subduction zones, such as the Central Mediterranean. For this purpose, I developed 2D and 3D numerical models of oceanic and continental subduction where the rheological, geometrical and compositional properties of the plates are varied. In these models, the trench and the overriding plate move self-consistently as a function of the dynamics of the system. The effect of continental subduction on trench migration is largely investigated. Results from a parametric study showed that despite different rheological properties of the plates, all models with a uniform continental crust share the same kinematic behaviour: the trench starts to advance once the continent arrives at the subduction zone. Hence, the advancing mode in continental collision scenarios is at least partly driven by an intrinsic feature of the system. Moreover, the presence of a weak lower crust within the continental plate can lead to the occurrence of delamination. Indeed, by changing the viscosity of the lower crust, both delamination and slab detachment can occur. Delamination is favoured by a low viscosity value of the lower crust, because this makes the mechanical decoupling easier between crust and lithospheric mantle. These features are observed both in 2D and 3D models, but the numerical results of the 3D models also showed that the rheology of the continental crust has a very strong effect on the dynamics of the whole system, since it influences not only the continental part of plate but also the oceanic sides.
Resumo:
The determination of skeletal loading conditions in vivo and their relationship to the health of bone tissues, remain an open question. Computational modeling of the musculoskeletal system is the only practicable method providing a valuable approach to muscle and joint loading analyses, although crucial shortcomings limit the translation process of computational methods into the orthopedic and neurological practice. A growing attention focused on subject-specific modeling, particularly when pathological musculoskeletal conditions need to be studied. Nevertheless, subject-specific data cannot be always collected in the research and clinical practice, and there is a lack of efficient methods and frameworks for building models and incorporating them in simulations of motion. The overall aim of the present PhD thesis was to introduce improvements to the state-of-the-art musculoskeletal modeling for the prediction of physiological muscle and joint loads during motion. A threefold goal was articulated as follows: (i) develop state-of-the art subject-specific models and analyze skeletal load predictions; (ii) analyze the sensitivity of model predictions to relevant musculotendon model parameters and kinematic uncertainties; (iii) design an efficient software framework simplifying the effort-intensive phases of subject-specific modeling pre-processing. The first goal underlined the relevance of subject-specific musculoskeletal modeling to determine physiological skeletal loads during gait, corroborating the choice of full subject-specific modeling for the analyses of pathological conditions. The second goal characterized the sensitivity of skeletal load predictions to major musculotendon parameters and kinematic uncertainties, and robust probabilistic methods were applied for methodological and clinical purposes. The last goal created an efficient software framework for subject-specific modeling and simulation, which is practical, user friendly and effort effective. Future research development aims at the implementation of more accurate models describing lower-limb joint mechanics and musculotendon paths, and the assessment of an overall scenario of the crucial model parameters affecting the skeletal load predictions through probabilistic modeling.
Resumo:
Background. Human small cell lung cancer (SCLC) accounting for approximately 15-20% of all lung cancers, is an aggressive tumor with high propensity for early regional and distant metastases. Although the initial tumor rate response to chemotherapy is very high, SCLC relapses after approximately 4 months in ED and 12 months in LD. Basal cell carcinoma (BCC) is the most prevalent cancer in the western world, and its incidence is increasing worldwide. This type of cancer rarely metastasizes and the death rate is extraordinary low. Surgery is curative for most of the patients, but for those that develop locally advanced or metastatic BCC there is currently no effective treatment. Both types of cancer have been deeply investigated and genetic alterations, MYCN amplification (MA) among the most interesting, have been found. These could become targets of new pharmacological therapies. Procedures. We created and characterized novel BLI xenograft orthotopic mouse models of SCLC to evaluate the tumor onset and progression and the efficacy of new pharmacological strategies. We compared an in vitro model with a transgenic mouse model of BCC, to investigate and delineate the canonical HH signalling pathway and its connections with other molecular pathways. Results and conclusions. The orthotopic models showed latency and progression patterns similar to human disease. Chemotherapy treatments improved survival rates and validated the in vivo model. The presence of MA and overexpression were confirmed in each model and we tested the efficacy of a new MYCN inhibitor in vitro. Preliminar data of BCC models highlighted Hedgehog pathway role and underlined the importance of both in vitro and in vivo strategies to achieve a better understanding of the pathology and to evaluate the applicability of new therapeutic compounds
Resumo:
A control-oriented model of a Dual Clutch Transmission was developed for real-time Hardware In the Loop (HIL) applications, to support model-based development of the DCT controller. The model is an innovative attempt to reproduce the fast dynamics of the actuation system while maintaining a step size large enough for real-time applications. The model comprehends a detailed physical description of hydraulic circuit, clutches, synchronizers and gears, and simplified vehicle and internal combustion engine sub-models. As the oil circulating in the system has a large bulk modulus, the pressure dynamics are very fast, possibly causing instability in a real-time simulation; the same challenge involves the servo valves dynamics, due to the very small masses of the moving elements. Therefore, the hydraulic circuit model has been modified and simplified without losing physical validity, in order to adapt it to the real-time simulation requirements. The results of offline simulations have been compared to on-board measurements to verify the validity of the developed model, that was then implemented in a HIL system and connected to the TCU (Transmission Control Unit). Several tests have been performed: electrical failure tests on sensors and actuators, hydraulic and mechanical failure tests on hydraulic valves, clutches and synchronizers, and application tests comprehending all the main features of the control performed by the TCU. Being based on physical laws, in every condition the model simulates a plausible reaction of the system. The first intensive use of the HIL application led to the validation of the new safety strategies implemented inside the TCU software. A test automation procedure has been developed to permit the execution of a pattern of tests without the interaction of the user; fully repeatable tests can be performed for non-regression verification, allowing the testing of new software releases in fully automatic mode.
Resumo:
The goal of the present research is to define a Semantic Web framework for precedent modelling, by using knowledge extracted from text, metadata, and rules, while maintaining a strong text-to-knowledge morphism between legal text and legal concepts, in order to fill the gap between legal document and its semantics. The framework is composed of four different models that make use of standard languages from the Semantic Web stack of technologies: a document metadata structure, modelling the main parts of a judgement, and creating a bridge between a text and its semantic annotations of legal concepts; a legal core ontology, modelling abstract legal concepts and institutions contained in a rule of law; a legal domain ontology, modelling the main legal concepts in a specific domain concerned by case-law; an argumentation system, modelling the structure of argumentation. The input to the framework includes metadata associated with judicial concepts, and an ontology library representing the structure of case-law. The research relies on the previous efforts of the community in the field of legal knowledge representation and rule interchange for applications in the legal domain, in order to apply the theory to a set of real legal documents, stressing the OWL axioms definitions as much as possible in order to enable them to provide a semantically powerful representation of the legal document and a solid ground for an argumentation system using a defeasible subset of predicate logics. It appears that some new features of OWL2 unlock useful reasoning features for legal knowledge, especially if combined with defeasible rules and argumentation schemes. The main task is thus to formalize legal concepts and argumentation patterns contained in a judgement, with the following requirement: to check, validate and reuse the discourse of a judge - and the argumentation he produces - as expressed by the judicial text.
Resumo:
Non-small-cell lung cancer (NSCLC) represents the leading cause of cancer death worldwide, and 5-year survival is about 16% for patients diagnosed with advanced lung cancer and about 70-90% when the disease is diagnosed and treated at earlier stages. Treatment of NSCLC is changed in the last years with the introduction of targeted agents, such as gefitinib and erlotinib, that have dramatically changed the natural history of NSCLC patients carrying specific mutations in the EGFR gene, or crizotinib, for patients with the EML4-ALK translocation. However, such patients represent only about 15-20% of all NSCLC patients, and for the remaining individuals conventional chemotherapy represents the standard choice yet, but response rate to thise type of treatment is only about 20%. Development of new drugs and new therapeutic approaches are so needed to improve patients outcome. In this project we aimed to analyse the antitumoral activity of two compounds with the ability to inhibit histone deacethylases (ACS 2 and ACS 33), derived from Valproic Acid and conjugated with H2S, in human cancer cell lines derived from NSCLC tissues. We showed that ACS 2 represents the more promising agent. It showed strong antitumoral and pro-apoptotic activities, by inducing membrane depolarization, cytocrome-c release and caspase 3 and 9 activation. It was able to reduce the invasive capacity of cells, through inhibition of metalloproteinases expression, and to induce a reduced chromatin condensation. This last characteristic is probably responsible for the observed high synergistic activity in combination with cisplatin. In conclusion our results highlight the potential role of the ACS 2 compound as new therapeutic option for NSCLC patients, especially in combination with cisplatin. If validated in in vivo models, this compound should be worthy for phase I clinical trials.
Resumo:
China is a large country characterized by remarkable growth and distinct regional diversity. Spatial disparity has always been a hot issue since China has been struggling to follow a balanced growth path but still confronting with unprecedented pressures and challenges. To better understand the inequality level benchmarking spatial distributions of Chinese provinces and municipalities and estimate dynamic trajectory of sustainable development in China, I constructed the Composite Index of Regional Development (CIRD) with five sub pillars/dimensions involving Macroeconomic Index (MEI), Science and Innovation Index (SCI), Environmental Sustainability Index (ESI), Human Capital Index (HCI) and Public Facilities Index (PFI), endeavoring to cover various fields of regional socioeconomic development. Ranking reports on the five sub dimensions and aggregated CIRD were provided in order to better measure the developmental degrees of 31 or 30 Chinese provinces and municipalities over 13 years from 1998 to 2010 as the time interval of three “Five-year Plans”. Further empirical applications of this CIRD focused on clustering and convergence estimation, attempting to fill up the gap in quantifying the developmental levels of regional comprehensive socioeconomics and estimating the dynamic convergence trajectory of regional sustainable development in a long run. Four clusters were benchmarked geographically-oriented in the map on the basis of cluster analysis, and club-convergence was observed in the Chinese provinces and municipalities based on stochastic kernel density estimation.