4 resultados para Complementation

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four glycoproteins (gD, gB, gH, and gL) are required for herpes simplex virus (HSV) entry into the cell and for cell-cell fusion in transfected cells. gD serves as the receptor-binding glycoprotein and as the trigger of fusion; the other three glycoproteins execute fusion between the viral envelope and the plasma or endocytic membranes. Little is known on the interaction of gD with gB, gH, and gL. Here, the interactions between herpes simplex virus gD and its nectin1 receptor or between gD, gB, and gH were analyzed by complementation of the N and C portions of split enhanced green fluorescent protein (EGFP) fused to the glycoproteins. Split EGFP complementation was detected between proteins designated gDN + gHC, gDN + gBC, and gHN + gBC + wtgD, both in cells transfected with two or tree glycoproteins and in cells transfected with the four glycoproteins, commited to form syncytia. The in situ assay provides evidence that gD interacts with gH and gB independently one of the other. We further document the interaction between gH and gB. To elucidate which portions of the glycoproteins interact with each other we generated mutants of gD and gB. gD triggers fusion through a specialised domain, named pro-fusion domain (PFD), located C-terminally in the ectodomain. Here, we show that PFD is made of subdomains 1 and 2 (amino acids 260–285 and 285–310) and that each one partially contributed to herpes simplex virus infectivity. Chimeric gB molecules composed of HSV and human herpesvirus 8 (HHV8) sequences failed to reach the cell surface and to complement a gB defective virus. By means of pull down experiments we analyzed the interactions of HSV-HHV8 gB chimeras with gH or gD fused to the strep-tag. The gB sequence between aa residues 219-360 was identified as putative region of interaction with gH or critical to the interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Group B Streptococcus (GBS) three structurally distinct types of pili have been discovered as potential virulence factors and vaccine candidates. The pilus-forming proteins are assembled into high-molecular weight polymers via a transpeptidation mechanism mediated by specific class C sortases. Using a multidisciplinary approach including bioinformatics, structural and biochemical studies and in vivo mutagenesis we performed a broad characterization of GBS sortase C. The high resolution X-ray structure of the enzymes revealed that the active site, located into the β-barrel core of the enzyme, is made of the catalytic triad His157-Cys219-Arg228 and covered by a loop, known as the “lid”. We show that the catalytic triad and the predicted N- and C-terminal trans-membrane regions are required for the enzyme activity. Interestingly, by in vivo complementation mutagenesis studies we found that the deletion of the entire lid loop or mutations in specific lid key residues had no effect on catalytic activity of the enzyme. In addition, kinetic characterizations of recombinant enzymes indicate that the lid mutants can still recognize and cleave the substrate-mimicking peptide at least as well as the wild type protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first aims of this study were to demonstrate if mitochondrial biogenesis and senescence can be induced simultaneously in cell lines upon exposure to a genotoxic stress, and if the presence of mtDNA mutations which impair the functionality of respiratory complexes can influence the ability of a cell to activate senescence. The data obtained on the oncocytic model XTC.UC1 demonstrated that the presence of mitochondrial dysfunction is involved in the maintenance of a senescent phenotype induced by γ-rays treatment. The involvement of mTORC1 in the regulation of senescence has been shown in this cell line. On the other hand, in cells which do not present mitochondrial dysfunction it has been verified that genotoxic stress determines the activation of both mitochondrial biogenesis and senescence. Further studies are necessary in order to verify if mitochondrial biogenesis sustains the activation of senescence. The second aim of this thesis was to determine the involvement of mTORC1 in the regulation of PGC-1α expression, in order to verify what is the cause of the development of oncocytoma in patients affected by two hereditary cancer syndromes; Cowden and Birt-hogg-Dubé . The study of oncocytic tumors developed by patients affected by these syndromes suggested that the double heterozigosity of the two causative genes, PTEN and FLCN respectively, induce the activation of mTORC1 and therefore the activation of PGC-1α expression. On XTC.UC1 cell line, the most suitable in vitro model, experiments of complementation of PTEN and FLCN were conducted. To date, these results demonstrated that mTORC1 is not involved in the regulation of PGC-1α expression, and PTEN and FLCN seem to have opposite effect on PGC-1α expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marine sediments are the main accumulation reservoir of organic recalcitrant pollutants such as polychlorinated biphenyls (PCBs). In the anoxic conditions typical of these sediments, anaerobic bacteria of the phylum Chloroflexi are able to attack these compounds in a process called microbial reductive dechlorination. Such activity and members of this phylum were detected in PCB-impacted sediments of the Venice Lagoon. The aim of this work was to investigate microbial reductive dechlorination and design bioremediation approaches for marine sediments of the area. Three out of six sediment cultures from different sampling areas exhibited dechlorination activities in the same conditions of the site and two phylotypes (VLD-1 and VLD-2) were detected and correlated to this metabolism. Biostimulation was tested on enriched dechlorinating sediment cultures from the same site using five different electron donors, of which lactate was the best biostimulating agent; complementation of microbial and chemical dechlorination catalyzed by biogenic zerovalent Pd nanoparticles was not effective due to sulfide poisoning of the catalyst. A new biosurfactant-producing strain of Shewanella frigidimarina was concomitantly obtained from hydrocarbon-degrading marine cultures and selected because of the low toxicity of its product. All these findings were then exploited to develop bioremediation lab-scale tests in shaken reactors and static microcosms on real sediments and water of the Venice lagoon, testing i) a bioaugmentation approach, with a selected enriched sediment culture from the same area, ii) a biostimulation approach with lactate as electron donor, iii) a bioavailability enhancement with the supplementation of the newly-discovered biosurfactant, and iv) all possible combinations of the afore-mentioned approaches. The best bioremediation approach resulted to be a combination of bioaugmentation and bioremediation and it could be a starting point to design bioremediation process for actual marine sediments of the Venice Lagoon area.