3 resultados para Combustion control

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Combustion control is one of the key factors to obtain better performances and lower pollutant emissions for diesel, spark ignition and HCCI engines. An algorithm that allows estimating, as an example, the mean indicated torque for each cylinder, could be easily used in control strategies, in order to carry out cylinders trade-off, control the cycle to cycle variation, or detect misfires. A tool that allows evaluating the 50% of Mass Fraction Burned (MFB50), or the net Cumulative Heat Release (CHRNET), or the ROHR peak value (Rate of Heat Release), could be used to optimize spark advance or to detect knock in gasoline engines and to optimize injection pattern in diesel engines. Modern management systems are based on the control of the mean indicated torque produced by the engine: they need a real or virtual sensor in order to compare the measured value with the target one. Many studies have been performed in order to obtain an accurate and reliable over time torque estimation. The aim of this PhD activity was to develop two different algorithms: the first one is based on the instantaneous engine speed fluctuations measurement. The speed signal is picked up directly from the sensor facing the toothed wheel mounted on the engine for other control purposes. The engine speed fluctuation amplitudes depend on the combustion and on the amount of torque delivered by each cylinder. The second algorithm processes in-cylinder pressure signals in the angular domain. In this case a crankshaft encoder is not necessary, because the angular reference can be obtained using a standard sensor wheel. The results obtained with these two methodologies are compared in order to evaluate which one is suitable for on board applications, depending on the accuracy required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A control-oriented model of a Dual Clutch Transmission was developed for real-time Hardware In the Loop (HIL) applications, to support model-based development of the DCT controller. The model is an innovative attempt to reproduce the fast dynamics of the actuation system while maintaining a step size large enough for real-time applications. The model comprehends a detailed physical description of hydraulic circuit, clutches, synchronizers and gears, and simplified vehicle and internal combustion engine sub-models. As the oil circulating in the system has a large bulk modulus, the pressure dynamics are very fast, possibly causing instability in a real-time simulation; the same challenge involves the servo valves dynamics, due to the very small masses of the moving elements. Therefore, the hydraulic circuit model has been modified and simplified without losing physical validity, in order to adapt it to the real-time simulation requirements. The results of offline simulations have been compared to on-board measurements to verify the validity of the developed model, that was then implemented in a HIL system and connected to the TCU (Transmission Control Unit). Several tests have been performed: electrical failure tests on sensors and actuators, hydraulic and mechanical failure tests on hydraulic valves, clutches and synchronizers, and application tests comprehending all the main features of the control performed by the TCU. Being based on physical laws, in every condition the model simulates a plausible reaction of the system. The first intensive use of the HIL application led to the validation of the new safety strategies implemented inside the TCU software. A test automation procedure has been developed to permit the execution of a pattern of tests without the interaction of the user; fully repeatable tests can be performed for non-regression verification, allowing the testing of new software releases in fully automatic mode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditionally, the study of internal combustion engines operation has focused on the steady-state performance. However, the daily driving schedule of automotive engines is inherently related to unsteady conditions. There are various operating conditions experienced by (diesel) engines that can be classified as transient. Besides the variation of the engine operating point, in terms of engine speed and torque, also the warm up phase can be considered as a transient condition. Chapter 2 has to do with this thermal transient condition; more precisely the main issue is the performance of a Selective Catalytic Reduction (SCR) system during cold start and warm up phases of the engine. The proposal of the underlying work is to investigate and identify optimal exhaust line heating strategies, to provide a fast activation of the catalytic reactions on SCR. Chapters 3 and 4 focus the attention on the dynamic behavior of the engine, when considering typical driving conditions. The common approach to dynamic optimization involves the solution of a single optimal-control problem. However, this approach requires the availability of models that are valid throughout the whole engine operating range and actuator ranges. In addition, the result of the optimization is meaningful only if the model is very accurate. Chapter 3 proposes a methodology to circumvent those demanding requirements: an iteration between transient measurements to refine a purpose-built model and a dynamic optimization which is constrained to the model validity region. Moreover all numerical methods required to implement this procedure are presented. Chapter 4 proposes an approach to derive a transient feedforward control system in an automated way. It relies on optimal control theory to solve a dynamic optimization problem for fast transients. From the optimal solutions, the relevant information is extracted and stored in maps spanned by the engine speed and the torque gradient.