14 resultados para Colon (Anatomia) - Cancer
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Despite new methods and combined strategies, conventional cancer chemotherapy still lacks specificity and induces drug resistance. Gene therapy can offer the potential to obtain the success in the clinical treatment of cancer and this can be achieved by replacing mutated tumour suppressor genes, inhibiting gene transcription, introducing new genes encoding for therapeutic products, or specifically silencing any given target gene. Concerning gene silencing, attention has recently shifted onto the RNA interference (RNAi) phenomenon. Gene silencing mediated by RNAi machinery is based on short RNA molecules, small interfering RNAs (siRNAs) and microRNAs (miRNAs), that are fully o partially homologous to the mRNA of the genes being silenced, respectively. On one hand, synthetic siRNAs appear as an important research tool to understand the function of a gene and the prospect of using siRNAs as potent and specific inhibitors of any target gene provides a new therapeutical approach for many untreatable diseases, particularly cancer. On the other hand, the discovery of the gene regulatory pathways mediated by miRNAs, offered to the research community new important perspectives for the comprehension of the physiological and, above all, the pathological mechanisms underlying the gene regulation. Indeed, changes in miRNAs expression have been identified in several types of neoplasia and it has also been proposed that the overexpression of genes in cancer cells may be due to the disruption of a control network in which relevant miRNA are implicated. For these reasons, I focused my research on a possible link between RNAi and the enzyme cyclooxygenase-2 (COX-2) in the field of colorectal cancer (CRC), since it has been established that the transition adenoma-adenocarcinoma and the progression of CRC depend on aberrant constitutive expression of COX-2 gene. In fact, overexpressed COX-2 is involved in the block of apoptosis, the stimulation of tumor-angiogenesis and promotes cell invasion, tumour growth and metastatization. On the basis of data reported in the literature, the first aim of my research was to develop an innovative and effective tool, based on the RNAi mechanism, able to silence strongly and specifically COX-2 expression in human colorectal cancer cell lines. In this study, I firstly show that an siRNA sequence directed against COX-2 mRNA (siCOX-2), potently downregulated COX-2 gene expression in human umbilical vein endothelial cells (HUVEC) and inhibited PMA-induced angiogenesis in vitro in a specific, non-toxic manner. Moreover, I found that the insertion of a specific cassette carrying anti-COX-2 shRNA sequence (shCOX-2, the precursor of siCOX-2 previously tested) into a viral vector (pSUPER.retro) greatly increased silencing potency in a colon cancer cell line (HT-29) without activating any interferon response. Phenotypically, COX-2 deficient HT-29 cells showed a significant impairment of their in vitro malignant behaviour. Thus, results reported here indicate an easy-to-use, powerful and high selective virus-based method to knockdown COX-2 gene in a stable and long-lasting manner, in colon cancer cells. Furthermore, they open up the possibility of an in vivo application of this anti-COX-2 retroviral vector, as therapeutic agent for human cancers overexpressing COX-2. In order to improve the tumour selectivity, pSUPER.retro vector was modified for the shCOX-2 expression cassette. The aim was to obtain a strong, specific transcription of shCOX-2 followed by COX-2 silencing mediated by siCOX-2 only in cancer cells. For this reason, H1 promoter in basic pSUPER.retro vector [pS(H1)] was substituted with the human Cox-2 promoter [pS(COX2)] and with a promoter containing repeated copies of the TCF binding element (TBE) [pS(TBE)]. These promoters were choosen because they are partculary activated in colon cancer cells. COX-2 was effectively silenced in HT-29 and HCA-7 colon cancer cells by using enhanced pS(COX2) and pS(TBE) vectors. In particular, an higher siCOX-2 production followed by a stronger inhibition of Cox-2 gene were achieved by using pS(TBE) vector, that represents not only the most effective, but also the most specific system to downregulate COX-2 in colon cancer cells. Because of the many limits that a retroviral therapy could have in a possible in vivo treatment of CRC, the next goal was to render the enhanced RNAi-mediate COX-2 silencing more suitable for this kind of application. Xiang and et al. (2006) demonstrated that it is possible to induce RNAi in mammalian cells after infection with engineered E. Coli strains expressing Inv and HlyA genes, which encode for two bacterial factors needed for successful transfer of shRNA in mammalian cells. This system, called “trans-kingdom” RNAi (tkRNAi) could represent an optimal approach for the treatment of colorectal cancer, since E. Coli in normally resident in human intestinal flora and could easily vehicled to the tumor tissue. For this reason, I tested the improved COX-2 silencing mediated by pS(COX2) and pS(TBE) vectors by using tkRNAi system. Results obtained in HT-29 and HCA-7 cell lines were in high agreement with data previously collected after the transfection of pS(COX2) and pS(TBE) vectors in the same cell lines. These findings suggest that tkRNAi system for COX-2 silencing, in particular mediated by pS(TBE) vector, could represent a promising tool for the treatment of colorectal cancer. Flanking the studies addressed to the setting-up of a RNAi-mediated therapeutical strategy, I proposed to get ahead with the comprehension of new molecular basis of human colorectal cancer. In particular, it is known that components of the miRNA/RNAi pathway may be altered during the progressive development of colorectal cancer (CRC), and it has been already demonstrated that some miRNAs work as tumor suppressors or oncomiRs in colon cancer. Thus, my hypothesis was that overexpressed COX-2 protein in colon cancer could be the result of decreased levels of one or more tumor suppressor miRNAs. In this thesis, I clearly show an inverse correlation between COX-2 expression and the human miR- 101(1) levels in colon cancer cell lines, tissues and metastases. I also demonstrate that the in vitro modulating of miR-101(1) expression in colon cancer cell lines leads to significant variations in COX-2 expression, and this phenomenon is based on a direct interaction between miR-101(1) and COX-2 mRNA. Moreover, I started to investigate miR-101(1) regulation in the hypoxic environment since adaptation to hypoxia is critical for tumor cell growth and survival and it is known that COX-2 can be induced directly by hypoxia-inducible factor 1 (HIF-1). Surprisingly, I observed that COX-2 overexpression induced by hypoxia is always coupled to a significant decrease of miR-101(1) levels in colon cancer cell lines, suggesting that miR-101(1) regulation could be involved in the adaption of cancer cells to the hypoxic environment that strongly characterize CRC tissues.
Resumo:
Cross Reacting Material 197(CRM197) is a Diphteria toxin non toxic mutant that had shown anti-tumor activity in mice and humans. CRM197 is utilized as a specific inhibitor of heparin-binding epidermal growth factor (HB-EGF), that competes for the epidermal growth factor receptor (EGFR), overexpressed in colorectal cancer and implicated in its progression. We evaluated the effects of CRM197 on HT-29 human colon cancer cell line behaviour and, for CRM197 recognized ability to inhibit HB-EGF, its possible effects on EGFR activation. In particular, while HT-29 does not show any reduction of viability after CRM197 treatment, or changes in cell cycle distribution, in EGFR localization or activation, they show a change in gene expression profile analyzed by microarray. This is the first study where the CRM197 treatment on HT-29 show the alteration of a specific and selected number of genes.
Resumo:
Cyclooxygenase-2/Carbonic anhydrase-IX up-regulation promotes invasive potential and hypoxia survival in colorectal cancer cells Purpose: Cyclooxygenase-2 (COX-2) is a major mediator of inflammation, playing a pivotal role in colorectal carcinogenesis. Hypoxia is an universal hallmark of solid tumour in vivo. This investigation was prompted by the observation that in colorectal cancer cells the expression of COX-2 protein is positively correlated with that of the hypoxia survival gene Carbonic Anhydrase-IX (CA-IX). Experimental Design: Since COX-2 gene expression and activity is increased in hypoxia, and that CA-IX is expressed also in normoxia in colorectal cancer cells, we tested the hypothesis that COX-2 activity in normoxia, as well as in hypoxia may be functionally linked to that of CA-IX gene. We investigated the role of COX-2 and CA-IX in colorectal cancer cell lines. In this regard, we performed RNA interference to knockdown COX-2 gene in vitro and immunohistochemistry to evaluate the protein expression of COX-2 and CA-IX in human colon cancer tissue specimens ex vivo. Results: We found that COX-2, by PGE2 production, controls CA-IX gene expression in an ERK dependent manner. In line with this finding, we also showed that the COX-2 inhibition by a specific short harpin COX-2 RNA (shCOX-2) or by a specific drug (SC-236), down-regulated CA-IX expression in colon cancer cells. We then exposed colon cancer cells to hypoxia stimuli and found that COX-2/CA-IX interplay promoted hypoxia survival. Moreover, we also report that COX-2/CA-IX interplay triggers Matrix Metalloproteinase 2/9 (MMP-2/9) activation and enhances the invasiveness of colorectal cancer cells. Thus given our above observations, we found that CA-IX and COX-2 protein expressions correlate with more aggressive stage colorectal cancer tissues ex vivo. Conclusions: Taken together these data indicate that COX-2/CA-IX interplay promotes an aggressive phenotype (hypoxia survival and invasiveness) which can be modulated in vitro by COX-2 selective inhibition and which may play a role in determining the biological aggressiveness of colorectal tumours. Moreover, in vitro and ex vivo data also suggest that the signatures of inflammation (COX-2) and hypoxia (CA-IX) may be difficult to be disentangled in colon cancer, being both responsible for the up-regulation of the same pathways.
Resumo:
The use of agents targeting EGFR represents a new frontier in colon cancer therapy. Among these, monoclonal antibodies (mAbs) and EGFR tyrosine kinase inhibitors (TKIs) seemed to be the most promising. However they have demonstrated low utility in therapy, the former being effective at toxic doses, the latter resulting inefficient in colon cancer. This thesis work presents studies on a new EGFR inhibitor, FR18, a molecule containing the same naphtoquinone core as shikonin, an agent with great anti-tumor potential. In HT-29, a human colon carcinoma cell line, flow cytometry, immunoprecipitation, and Western blot analysis, confocal spectral microscopy have demonstrated that FR18 is active at concentrations as low as 10 nM, inhibits EGF binding to EGFR while leaving unperturbed the receptor kinase activity. At concentration ranging from 30 nM to 5 μM, it activates apoptosis. FR18 seems therefore to have possible therapeutic applications in colon cancer. In addition, surface plasmon resonance (SPR) investigation of the direct EGF/EGFR complex interaction using different experimental approaches is presented. A commercially available purified EGFR was immobilised by amine coupling chemistry on SPR sensor chip and its interaction to EGF resulted to have a KD = 368 ± 0.65 nM. SPR technology allows the study of biomolecular interactions in real-time and label-free with a high degree of sensitivity and specificity and thus represents an important tool for drug discovery studies. On the other hand EGF/EGFR complex interaction represents a challenging but important system that can lead to significant general knowledge about receptor-ligand interactions, and the design of new drugs intended to interfere with EGFR binding activity.
Resumo:
The detection of Colorectal Cancer (CRC), at early stages, is one of the proven strategies resulting in a higher cure rate. In recent years, several studies have appeared identifying potential cancer markers in serum, plasma and stool in an attempt to improve actual screening procedures. Thus, the aim of the study was (1) Evaluate MN frequency, (2) Evaluate plasma ultrafiltrate capacity to induce MN formation, (3) Evaluate SEPT9 and NOTCH3 promoter methylation profile in peripheral blood lymphocytes from subjects resulted positive to fecal occult blood test and examined by colonoscopy. MN frequency was significantly higher in subjects with histological diagnosis of CRC and adenoma than control (p ≤ 0.001 and p ≤ 0.01, respectively). About, CF-MN analysis, a statistically significant difference was observed between CRC and control (p ≤ 0.05). On the other hand, SEPT9 and NOTCH3 promoter methylation status was significantly lower in CRC subjects than controls; additionally, NOTCH3 promoter methylation status was significantly lower in CRC subjects than adenoma subjects (p ≤ 0.01). The results obtained allow conclude that MN frequency varies according CRC pathologic status and, together with other variables, is a valid biomarker for adenoma and CRC risk. Additionally, the plasma of patients affected with CRC not only serve as a biomarker for oxidative stress but also as biomarker of genetic damage correlated with the carcinogenic process that verifies in colon-rectum. SEPT9 and NOTCH3 promoter methylation status, at peripheral blood level, varies according hystopathological changes observed in colon-rectum, suggesting that promoter methylation profile of these genes could be a reliable biomarker for CRC risk.
Resumo:
I microRNA sono una classe di piccole molecole di RNA non codificante che controllano la stabilità di numerosi RNA messaggeri, perciò sono considerati come “master regulator” dell’espressione genica. Ogni tumore è caratterizzato da un profilo di espressione alterato dei microRNA. Il miR-101 è un oncosoppressore represso nei tessuti tumorali ed è candidato come biomarcatore del cancro colon-rettale. È regolato da numerosi eventi fisiologici e patologici, come angiogenesi e carcinogenesi. Gli eventi molecolari coinvolti nella regolazione dell’espressione del miR-101 sono scarsamente conosciuti, poiché è trascritto da due loci genici non caratterizzati. L’obiettivo di questo lavoro è di caratterizzare i geni del miR-101 ed individuarne i regolatori molecolari coinvolti nella cancerogenesi colon-rettale.
Resumo:
Top1-DNA cleavage complexes (Top1ccs) trigger an accumulation of antisense RNAPII transcripts specifically at active divergent CpG-island promoters in a replication independent and Top1 dependent manner, leading to transcription-dependent genome instability and altered transcription regulation. Using different cancer cell lines of colon and osteo origins, we show that they display different sensitivity to CPT and G4 binder that is independent from Top1 level. To look at the interactions between Top1 and G4, we show that co-treatment with G4 binders potentiate the cell cytotoxicity of CPT regardless of the treatment sequences. Potentiation is indicated by a reduced inhibition concentration (IC50) with a more profound cytotoxicity in CPT-resistant cell lines, HCT15 and U2OS, hence, indicating an interaction between Top1inhibitor and G4 binders. Moreover, computational analysis confirmed the present of G4 motifs in genes with CPT-induced antisense transcription. G4 motifs are present mostly 5000 bp upstream from transcription start site and notably lower in genes. Comparisons between genes with no antisense transcription and genes with antisense transcription show that G4 motifs in this region are notably lower in the genes with antisense transcripts. Since CPT increases negative supercoils at promoters of intermediate activity, the formation of G4 is also increased in CPT-treated cells. Suprisingly, formation of G4 is regulated in parallel to the transient stabilization of R-loops, indicating a role in response to CPT-induced stress. G4 formation is highly elevated in Pyridostatin treated cells, which previous study shows increased formation of γH2Ax foci. This effect is also seen in the CPT-resistant cell lines, HCT15, indicating that the formation is a general event in response to CPT. We also show that R-loop formation is greatly increased in Pyridostatin treated cells. In order to study the role of R-loops and G4 structures in Top1cc-dependant repair pathway, we inhibited tyrosyl-phosphodiestrase 1 (TDP-1) using a TDP-1 inhibitor.
Resumo:
In recent years, it has become evident that the role of mitochondria in the metabolic rewiring is essential for cancer development and progression. The metabolic profile during tumorigenesis has been performed mainly in traditional 2D cell models, including cell lines of various lineages and phenotypes. Although useful in many ways, their relevance can be often debatable, as they lack the interactions between different cells of the tumour microenvironment and/or interaction with the extracellular matrix 1,2. Improved models are now being developed using 3D cell culture technology, contributing with increased physiological relevance 3,4. In this work, we improved a method for the generation of 3D models from healthy and tumour colon tissue, based on organoid technology, and performed their molecular and biochemical characterization and validation. Further, in-plate cryopreservation was applied to these models, and optimal results were obtained in terms of cell viability and functionality of the cryopreserved models. We also cryopreserved colon fibroblasts with the aim to introduce them in a co-culture cryopreserved model with organoids. This technology allows the conversion of cell models into “plug and play” formats. Therefore, cryopreservation in-plate facilitates the accessibility of specialized cell models to cell-based research and application, in cases where otherwise such specialized models would be out of reach. Finally, we briefly explored the field of bioprinting, by testing a new matrix to support the growth of colon tumour organoids, which revealed promising preliminary results. To facilitate the reader, we organized this thesis into chapters, divided by the main points of work which include development, characterization and validation of the model, commercial output, and associated applications. Each chapter has a brief introduction, followed by results and discussion and a final conclusion. The thesis has also a general discussion and conclusion section in the end, which covers the main results obtained during this work.
Resumo:
Topoisomerase I (Top1) poisons are among the most clinically-effective drugs used for colon, ovary and lung cancers. Unpublished data from our lab have recently revealed that the structurally-unrelated Top1 poisons, Camptothecin (CPT) and Indimitecan (LMP776), induce the formation of micronuclei (MNi) in human cancer cells. In addition, MNi trigger an innate immune gene response by stimulating the cGAS/STING pathway. As the mechanisms of MNi formation are not fully determined, our aim is here to establish how MNi form after Top1 poisoning. Using immunofluorescence assays and EdU labelling of nascent DNAs, our results show that, after 24 hours of recovery, a short treatment with sub-cytotoxic doses of Top1 poisons induces the formation of MNi that do not contain newly synthetized (EdU+) DNA. We also saw that Top1 poisons delay replication machinery reducing EdU incorporation and produce significant levels of the damage markers γH2AX and p53BP1 in S-phase cells but not in G1 and G2/M cells. The results also show that MNi formation is dependent on R-loops, as RNaseH1 overexpression markedly reduces Top1 induced MNi. Genome-wide mapping of R-loops by DRIP-seq technique revealed that R-loop levels are both decreased and increased by CPT. In particular, increased R-loops are mainly found at active genes and always overlapped with Top1cc sites. We also found that increased R-loops overlap with lamina-associated chromatin domains while decreased R-loops correlate with replication origin sites. Overall, our data are consistent with the formation of MNi due to R-loop increase and under-replication at specific regions caused by Top1 poisons. These results will eventually help in developing new strategies for effective personalized interventions by using Top1-targeted compounds as immuno-modulators in cancer patients.
Resumo:
BRCA1 and BRCA2 are the most frequently mutated genes in ovarian cancer (OC), crucial both for the identification of cancer predisposition and therapeutic choices. However, germline variants in other genes could be involved in OC susceptibility. We characterized OC patients to detect mutations in genes other than BRCA1/2 that could be associated with a high risk to develop OC, and that could permit patients to enter the most appropriate treatment and surveillance program. Next-Generation Sequencing analysis with a 94-gene panel was performed on germline DNA of 219 OC patients. We identified 34 pathogenic/likely-pathogenic variants in BRCA1/2 and 38 in other 21 genes. Patients with pathogenic/likely-pathogenic variants in non-BRCA1/2 genes developed mainly OC alone compared to the other groups that developed also breast cancer or other tumors (p=0.001). Clinical correlation analysis showed that low-risk patients were significantly associated with platinum sensitivity (p<0.001). Regarding PARP inhibitors (PARPi) response, patients with pathogenic mutations in non-BRCA1/2 genes had significantly worse PFS and OS. Moreover, a statistically significant worse PFS was found for every increase of one thousand platelets before PARPi treatment. To conclude, knowledge about molecular alterations in genes beyond BRCA1/2 in OC could allow for more personalized diagnostic, predictive, prognostic, and therapeutic strategies for OC patients.
Resumo:
Despite the paramount advances in cancer research, breast cancer (BC) still ranks one of the leading causes of cancer-related death worldwide. Thanks to the screening campaign started in developed countries, BC is often diagnosed at early stages (non-metastatic BC, nmBC), but disease relapse occurrence even after decades and at distant sites is not an uncommon phenomenon. Conversely, metastatic BC (mBC) is considered an incurable disease. The major perpetrators of tumor spread to secondary organs are circulating tumor cells (CTCs), a rare population of cells detectable in the peripheral blood of oncologic patients. In this study, CTCs from patients diagnosed with luminal nmBC and mBC (hormone receptor positive, Human Epidermal Growth Factor Receptor 2 (HER2) negative) were characterized at both phenotypic and molecular levels. To better understand the molecular mechanisms underlying their biology and their metastatic potential, next-generation sequencing (NGS) analyses were performed at single-cell resolution to assess copy number aberrations (CNAs), single nucleotide variants (SNVs) and gene expression profiling. The findings of this study arise hints in CTC detection, and pave the way to new application in CTC research.
Resumo:
Pathogenic aberrations in homologous recombination DNA repair (HRR) genes occur in approximately 1 to 4 men with advanced prostate cancer (PCa). Treatment with PARP inhibitors (PARPi) has recently been introduced for metastatic castration-resistant PCa patients, increasing clinicians' interest in the molecular characterization of all PCa patients. The limitations of using old, low-quality tumor tissue for genetic analysis, which is very common for PCa, can be overcome by using liquid biopsy as an alternative biomarker source. In this study, we aimed to evaluate the detection of molecular alterations in HRR genes on liquid biopsy compared with tumor tissue from PCa patients. Secondarily, we explored the genomic instability score (GIS), and a broader range of gene alterations for in-depth characterization of the PCa cohort. Plasma samples were collected from 63 patients with PCa. Sophia Homologous Recombination Solution (targeting 16 HRR genes) and shallow whole genome sequencing (sWGS) were used for genomic analysis of tissue DNA and circulating tumor DNA (ct). A total of 33 alterations (mainly on TP53, ATM, CHEK2, CDK12, and BRCA1/2) were identified in 28,5% of PCa plasma patients. By integrating the mutational and sWGS data, the HRR status of PCa patients was determined and a concordance agreement of 85,7% was identified with tumor tissue. A median GIS of 15 was obtained, reaching a score of 63 in 2 samples with double alterations, BRCA1 and TP53. We explored the PCa mutation landscape, and the most significant enriched pathways identified were the sphingosine 1-phosphate (S1P) receptor signaling and the PI3K-AKT-mTOR pathway. HRR analysis on FFPE and liquid biopsy samples show high concordance, demonstrating that the noninvasive ctDNA-enriched plasma can be an optimal alternative source for molecular SNV and CNV analysis. In addition, the evaluation of GIS and pathway interaction should be considered for more comprehensive molecular characterization in PCa patients.
Resumo:
This thesis explores the advancement of cancer treatment through targeted photodynamic therapy (PDT) using bioengineered phages. It aims to harness the specificity of phages for targeting cancer-related receptors such as EGFR and HER2, which are pivotal in numerous malignancies and associated with poor outcomes. The study commenced with the M13EGFR phage, modified to target EGFR through pIII-displayed EGFR-binding peptides, demonstrating enhanced killing efficiency when conjugated with the Rose Bengal photosensitizer. This phase underscored phages' potential in targeted PDT. A breakthrough was achieved with the development of the M137D12 phage, engineered to display the 7D12 nanobody for precise EGFR targeting, marking a shift from peptide-based to nanobody-based targeting and yielding better specificity and therapeutic results. The translational potential was highlighted through in vitro and in vivo assays employing therapeutic lasers, showing effective, specific cancer cell killing through a necrotic mechanism. Additionally, the research delved into the interaction between the M13CC phage and colon cancer models, demonstrating its ability to penetrate and disrupt cancer spheroids only upon irradiation, indicating a significant advancement in targeting cells within challenging tumor microenvironments. In summary, the thesis provides a thorough examination of the phage platform's efficacy and versatility for targeted PDT. The promising outcomes, especially with the M137D12 phage, and initial findings on a HER2-targeting phage (M13HER2), forecast a promising future for phage-mediated, targeted anticancer strategies employing photosensitizers in PDT.