11 resultados para Co-creation of value
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Amid the remarkable growth of innovative technologies, particularly immersive technologies like Extended Reality (XR) (comprising of Virtual Reality (VR), Augmented Reality (AR) & Mixed Reality (MR)), a transformation is unfolding in the way we collaborate and interact. The current research takes the initiative to explore XR’s potential for co-creation activities and proposes XR as a future co-creation platform. It strives to develop a XR-based co-creation system, actively engage stakeholders in the co-creation process, with the goal of enhancing their creative businesses. The research leverages XR tools to investigate how they can enhance digital co-creation methods and determine if the system facilitates efficient and effective value creation during XR-based co-creation sessions. In specific terms, the research probes into whether the XR-based co-creation method and environment enhances the quality and novelty of ideas, reduce communication challenges by providing better understanding of the product, problem or process and optimize the process in terms of reduction in time and costs. The research introduces a multi-user, multi-sensory collaborative and interactive XR platform that adapts to various use-case scenarios. This thesis also presents the user testing performed to collect both qualitative and quantitative data, which serves to substantiate the hypothesis. What sets this XR system apart is its incorporation of fully functional prototypes into a mixed reality environment, providing users with a unique dimension within an immersive digital landscape. The outcomes derived from the experimental studies demonstrate that XR-based co-creation surpasses conventional desktop co-creation methods and remarkably, the results are even comparable to a full mock-up test. In conclusion, the research underscores that the utilization of XR as a tool for co-creation generates substantial value. It serves as a method that enhances the process, an environment that fosters interaction and collaboration, and a platform that equips stakeholders with the means to engage effectively.
Resumo:
Thanks to the Chandra and XMM–Newton surveys, the hard X-ray sky is now probed down to a flux limit where the bulk of the X-ray background is almost completely resolved into discrete sources, at least in the 2–8 keV band. Extensive programs of multiwavelength follow-up observations showed that the large majority of hard X–ray selected sources are identified with Active Galactic Nuclei (AGN) spanning a broad range of redshifts, luminosities and optical properties. A sizable fraction of relatively luminous X-ray sources hosting an active, presumably obscured, nucleus would not have been easily recognized as such on the basis of optical observations because characterized by “peculiar” optical properties. In my PhD thesis, I will focus the attention on the nature of two classes of hard X-ray selected “elusive” sources: those characterized by high X-ray-to-optical flux ratios and red optical-to-near-infrared colors, a fraction of which associated with Type 2 quasars, and the X-ray bright optically normal galaxies, also known as XBONGs. In order to characterize the properties of these classes of elusive AGN, the datasets of several deep and large-area surveys have been fully exploited. The first class of “elusive” sources is characterized by X-ray-to-optical flux ratios (X/O) significantly higher than what is generally observed from unobscured quasars and Seyfert galaxies. The properties of well defined samples of high X/O sources detected at bright X–ray fluxes suggest that X/O selection is highly efficient in sampling high–redshift obscured quasars. At the limits of deep Chandra surveys (∼10−16 erg cm−2 s−1), high X/O sources are generally characterized by extremely faint optical magnitudes, hence their spectroscopic identification is hardly feasible even with the largest telescopes. In this framework, a detailed investigation of their X-ray properties may provide useful information on the nature of this important component of the X-ray source population. The X-ray data of the deepest X-ray observations ever performed, the Chandra deep fields, allows us to characterize the average X-ray properties of the high X/O population. The results of spectral analysis clearly indicate that the high X/O sources represent the most obscured component of the X–ray background. Their spectra are harder (G ∼ 1) than any other class of sources in the deep fields and also of the XRB spectrum (G ≈ 1.4). In order to better understand the AGN physics and evolution, a much better knowledge of the redshift, luminosity and spectral energy distributions (SEDs) of elusive AGN is of paramount importance. The recent COSMOS survey provides the necessary multiwavelength database to characterize the SEDs of a statistically robust sample of obscured sources. The combination of high X/O and red-colors offers a powerful tool to select obscured luminous objects at high redshift. A large sample of X-ray emitting extremely red objects (R−K >5) has been collected and their optical-infrared properties have been studied. In particular, using an appropriate SED fitting procedure, the nuclear and the host galaxy components have been deconvolved over a large range of wavelengths and ptical nuclear extinctions, black hole masses and Eddington ratios have been estimated. It is important to remark that the combination of hard X-ray selection and extreme red colors is highly efficient in picking up highly obscured, luminous sources at high redshift. Although the XBONGs do not present a new source population, the interest on the nature of these sources has gained a renewed attention after the discovery of several examples from recent Chandra and XMM–Newton surveys. Even though several possibilities were proposed in recent literature to explain why a relatively luminous (LX = 1042 − 1043erg s−1) hard X-ray source does not leave any significant signature of its presence in terms of optical emission lines, the very nature of XBONGs is still subject of debate. Good-quality photometric near-infrared data (ISAAC/VLT) of 4 low-redshift XBONGs from the HELLAS2XMMsurvey have been used to search for the presence of the putative nucleus, applying the surface-brightness decomposition technique. In two out of the four sources, the presence of a nuclear weak component hosted by a bright galaxy has been revealed. The results indicate that moderate amounts of gas and dust, covering a large solid angle (possibly 4p) at the nuclear source, may explain the lack of optical emission lines. A weak nucleus not able to produce suffcient UV photons may provide an alternative or additional explanation. On the basis of an admittedly small sample, we conclude that XBONGs constitute a mixed bag rather than a new source population. When the presence of a nucleus is revealed, it turns out to be mildly absorbed and hosted by a bright galaxy.
Resumo:
In this Thesis, we investigate the cosmological co-evolution of supermassive black holes (BHs), Active Galactic Nuclei (AGN) and their hosting dark matter (DM) halos and galaxies, within the standard CDM scenario. We analyze both analytic, semi-analytic and hybrid techniques and use the most recent observational data available to constrain the assumptions underlying our models. First, we focus on very simple analytic models where the assembly of BHs is directly related to the merger history of DM haloes. For this purpose, we implement the two original analytic models of Wyithe & Loeb 2002 and Wyithe & Loeb 2003, compare their predictions to the AGN luminosity function and clustering data, and discuss possible modifications to the models that improve the match to the observation. Then we study more sophisticated semi-analytic models in which however the baryonic physics is neglected as well. Finally we improve the hybrid simulation of De Lucia & Blaizot 2007, adding new semi-analytical prescriptions to describe the BH mass accretion rate during each merger event and its conversion into radiation, and compare the derived BH scaling relations, fundamental plane and mass function, and the AGN luminosity function with observations. All our results support the following scenario: • The cosmological co-evolution of BHs, AGN and galaxies can be well described within the CDM model. • At redshifts z & 1, the evolution history of DM halo fully determines the overall properties of the BH and AGN populations. The AGN emission is triggered mainly by DM halo major mergers and, on average, AGN shine at their Eddington luminosity. • At redshifts z . 1, BH growth decouples from halo growth. Galaxy major mergers cannot constitute the only trigger to accretion episodes in this phase. • When a static hot halo has formed around a galaxy, a fraction of the hot gas continuously accretes onto the central BH, causing a low-energy “radio” activity at the galactic centre, which prevents significant gas cooling and thus limiting the mass of the central galaxies and quenching the star formation at late time. • The cold gas fraction accreted by BHs at high redshifts seems to be larger than at low redshifts.
Resumo:
The Ph.D. thesis describes the simulations of different microwave links from the transmitter to the receiver intermediate-frequency ports, by means of a rigorous circuit-level nonlinear analysis approach coupled with the electromagnetic characterization of the transmitter and receiver front ends. This includes a full electromagnetic computation of the radiated far field which is used to establish the connection between transmitter and receiver. Digitally modulated radio-frequency drive is treated by a modulation-oriented harmonic-balance method based on Krylov-subspace model-order reduction to allow the handling of large-size front ends. Different examples of links have been presented: an End-to-End link simulated by making use of an artificial neural network model; the latter allows a fast computation of the link itself when driven by long sequences of the order of millions of samples. In this way a meaningful evaluation of such link performance aspects as the bit error rate becomes possible at the circuit level. Subsequently, a work focused on the co-simulation an entire link including a realistic simulation of the radio channel has been presented. The channel has been characterized by means of a deterministic approach, such as Ray Tracing technique. Then, a 2x2 multiple-input multiple-output antenna link has been simulated; in this work near-field and far-field coupling between radiating elements, as well as the environment factors, has been rigorously taken into account. Finally, within the scope to simulate an entire ultra-wideband link, the transmitting side of an ultrawideband link has been designed, and an interesting Front-End co-design technique application has been setup.
Resumo:
The objective of the Ph.D. thesis is to put the basis of an all-embracing link analysis procedure that may form a general reference scheme for the future state-of-the-art of RF/microwave link design: it is basically meant as a circuit-level simulation of an entire radio link, with – generally multiple – transmitting and receiving antennas examined by EM analysis. In this way the influence of mutual couplings on the frequency-dependent near-field and far-field performance of each element is fully accounted for. The set of transmitters is treated as a unique nonlinear system loaded by the multiport antenna, and is analyzed by nonlinear circuit techniques. In order to establish the connection between transmitters and receivers, the far-fields incident onto the receivers are evaluated by EM analysis and are combined by extending an available Ray Tracing technique to the link study. EM theory is used to describe the receiving array as a linear active multiport network. Link performances in terms of bit error rate (BER) are eventually verified a posteriori by a fast system-level algorithm. In order to validate the proposed approach, four heterogeneous application contexts are provided. A complete MIMO link design in a realistic propagation scenario is meant to constitute the reference case study. The second one regards the design, optimization and testing of various typologies of rectennas for power generation by common RF sources. Finally, the project and implementation of two typologies of radio identification tags, at X-band and V-band respectively. In all the cases the importance of an exhaustive nonlinear/electromagnetic co-simulation and co-design is demonstrated to be essential for any accurate system performance prediction.
Resumo:
The scope of my research project is to produce and characterize new crystalline forms of organic compounds, focusing the attention on co-crystals and then transferring these notions on APIs to produce co-crystals of potential interest in the pharmaceutical field. In the first part of this work co-crystallization experiments were performed using as building blocks the family of aliphatic dicarboxylic acids HOOC-(CH2)n-COOH, with n= 2-8. This class of compounds has always been an object of study because it is characterized by an interesting phenomenon of alternation of melting points: the acids with an even number of carbon atoms show a melting point higher than those with an odd one. The acids were co-crystallized with four dipyridyl molecules (formed by two pyridine rings with a different number of bridging carbon atoms) through the formation of intermolecular interactions N•••(H)O. The bases used were: 4,4’-bipyridine (BPY), 1,2-bis(4-pyridyl)ethane (BPA), 1,2-(di-4-pyridyl)ethylene (BPE) and 1,2-bis(4-pyridyl)propane (BPP). The co-crystals obtained by solution synthesis were characterized by different solid-state techniques to determine the structure and to see how the melting points in co-crystals change. In the second part of this study we tried to obtain new crystal forms of compounds of pharmaceutical interest. The APIs studied are: O-desmethylvenlafaxine, Lidocaine, Nalidixic Acid and Sulfadiazine. Each API was subjected to Polymorph Screening and Salt/Co-crystal Screening experiments to identify new crystal forms characterized by different properties. In a typical Salt/Co-crystal Screening the sample was made to react with a co-former (solid or liquid) through different methods: crystallization by solution, grinding, kneading and solid-gas reactions. The new crystal forms obtained were characterized by different solid state techniques (X-ray single crystal diffraction, X-ray powder diffraction, Differential Scanning Calorimetry, Thermogravimetric Analysis, Evolved gas analysis, FT-IR – ATR, Solid State N.M.R).
Resumo:
NGAL (Neutrophil Gelatinase-associated Lipocalin ) is a protein of lipocalin superfamily. Recent literature focused on its biomarkers function in several pathological condition (acute and chronic kidney damage, autoimmune disease, malignancy). NGAL biological role is not well elucidated. Several are the demonstration of its bacteriostatic role. Recent papers have indeed highlight NGAL role in NFkB modulation. The aim of this study is to understand whether NGAL may exert a role in the activation (modulation) of T cell response through the regulation of HLA-G complex, a mediator of tolerance. From 8 healthy donors we obtained peripheral blood mononuclear cells (PBMCs) and we isolated by centrifugation on a Ficoll gradient. Cells were then treated with four concentrations of NGAL (40-320 ng/ml) with or without iron. We performed flow cytometry analysis and ELISA test. NGAL increased the HLA-G expression on CD4+ T cells, with an increasing corresponding to the dose. Iron effect is not of unique interpretation. NGAL adiction affects regulatory T cells increasing in vitro expansion of CD4+ CD25+ FoxP3+ cells. Neutralizing antibody against NGAL decreased HLA-G expression and reduced significantly CD4+ CD25+ FoxP3+ cells percentage. In conclusion, we provided in vitro evidence of NGAL involvement in cellular immunity. The potential role of NGAL as an immunomodulatory molecule has been evaluated: it has been shown that NGAL plays a pivotal role in the induction of immune tolerance up regulating HLA-G and T regulatory cells expression in healthy donors. As potential future scenario we highlight the in vivo role of NGAL in immunology and immunomodulation, and its possible relationship with immunosuppressive therapy efficacy, tolerance induction in transplant patients, and/or in other immunological disorders.
Resumo:
The research hypothesis of the thesis is that “an open participation in the co-creation of the services and environments, makes life easier for vulnerable groups”; assuming that the participatory and emancipatory approaches are processes of possible actions and changes aimed at facilitating people’s lives. The adoption of these approaches is put forward as the common denominator of social innovative practices that supporting inclusive processes allow a shift from a medical model to a civil and human rights approach to disability. The theoretical basis of this assumption finds support in many principles of Inclusive Education and the main focus of the hypothesis of research is on participation and emancipation as approaches aimed at facing emerging and existing problems related to inclusion. The framework of reference for the research is represented by the perspectives adopted by several international documents concerning policies and interventions to promote and support the leadership and participation of vulnerable groups. In the first part an in-depth analysis of the main academic publications on the central themes of the thesis has been carried out. After investigating the framework of reference, the analysis focuses on the main tools of participatory and emancipatory approaches, which are able to connect with the concepts of active citizenship and social innovation. In the second part two case studies concerning participatory and emancipatory approaches in the areas of concern are presented and analyzed as example of the improvement of inclusion, through the involvement and participation of persons with disability. The research has been developed using a holistic and interdisciplinary approach, aimed at providing a knowledge-base that fosters a shift from a situation of passivity and care towards a new scenario based on the person’s commitment in the elaboration of his/her own project of life.
Resumo:
In the last decades, organic semiconductors have attracted attention due to their possible employment in solution-processed optoelectronic and electronic devices. One of the advantages of solution processing is the possibility to process into flexible substrates at low cost. Organic molecular materials tend to form polymorphs, which can exhibit very different properties. In most cases, the control of the crystal structure is decisive to maximize the performance of the final device. Although organic electronics have progressed a lot, n-type organic semiconductors still lag behind p-type, presenting challenges such as air instability and poor solubility. NDI derivatives are promising candidates for applications in organic electronics due to their characteristics. Recently, the structure-properties relationship and the polymorphism of these molecules have gained attention. In the first part of this thesis, NDI-C6 thermal behavior was extensively explored which revealed two different behaviors depending on the annealing process. This study allowed to define the stability ranking of the NDI-C6 bulk forms and to determine the crystal structure of Form γ at 54°C. Additionally, the polymorphic and thermal behavior of thin films of NDI-C6 was also explored. It was possible to isolate pure Form α, Form β, Form γ and a new metastable Form ε. It was also possible to determine the stability ranking of the phases in thin films. OFETs were fabricated having different polymorphs as active layer, unfortunately the performance was not ideal. During the second part of this thesis, core-chlorinated NDIs with fluoroalkyl chains were studied. Initially, the focus was on the polymorphism of CF3-NDI that revealed a solvate form with a very interesting molecular arrangement suggesting the possibility to form charge transfer co-crystals. In the last part of the thesis, the synthesis and characterization of CT co-crystal with different NDI derivatives, and acceptor and as donor BTBT and ditBu-BTBT were explored.
Resumo:
La ricerca si propone un duplice obbiettivo: 1. provare, attraverso l’applicazione di un metodo teorico tradizionale di analisi economico-finanziaria, il livello ottimale di equilibrio finanziario fra accesso al credito esterno e capitale proprio; 2. mostrare l’utilità di alcuni strumenti finanziari partecipativi per la ricapitalizzazione dell’impresa cooperativa. Oggetto di studio è l’impresa cooperativa che si occupa di una o più fasi del processo di lavorazione, trasformazione e prima commercializzazione del prodotto agricolo conferito dai soci, confrontata con le imprese di capitali che svolgono la medesima attività. La società cooperativa e quella capitalistica saranno, pertanto analizzate in termini di liquidità generata, redditività prodotta e grado di indebitamento, attraverso il calcolo e l’analisi di una serie di indici, tratti dai rispettivi bilanci d’esercizio. È opportuno sottolineare che nella seguente trattazione sarà riservato uno spazio al tema della ricerca del valore nell’impresa cooperativa inteso come espressione della ricchezza creata dai processi aziendali in un determinato periodo di tempo tentando di definire, se esiste, una struttura finanziaria ottimale , ossia uno specifico rapporto tra indebitamento finanziario e mezzi propri, che massimizzi il valore dell’impresa. L’attenzione verso la struttura finanziaria, pertanto, non sarà solo rivolta al costo esplicito del debito o dell’equity, ma si estenderà anche alle implicazioni delle scelte di finanziamento sulle modalità di governo dell’impresa. Infatti molti studi di economia aziendale, e in particolar modo di gestione d’impresa e finanza aziendale, hanno trattato il tema dell’attività di governo dell’impresa, quale elemento in grado di contribuire alla creazione di valore non solo attraverso la selezione dei progetti d’investimento ma anche attraverso la composizione della struttura finanziaria.
Resumo:
The research is a 13-months ethnographic field work on the early operations of a Multi-party alliance active in the global field of indoor positioning. The study aims to understand and investigate empirically the challenges that at the individual and group level influence the organizing principle guiding the alliance operations and evolution. Its contribution rests on the dynamics affecting ecosystems of innovation and collaborative spaces of value co-creation in inter-organizational projects.