2 resultados para Clonal complex

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analysis of publicly available genomes of Streptococcus pneumoniae has led to the identification of a new genomic element resembling gram-positive pilus islets (PIs). Here, we demonstrate that this genomic region, herein referred to as PI-2 (containing the genes pitA, sipA, pitB, srtG1, and srtG2) codes for a novel functional pilus in pneumococcus. Therefore, there are two pilus islets identified so far in this pathogen (PI-1 and PI-2). Polymerization of the PI-2 pilus requires the backbone protein PitB as well as the sortase SrtG1 and the signal peptidase-like protein SipA. PI-2 is associated with serotypes 1, 2, 7F, 19A, and 19F, considered to be emerging in both industrialized and developing countries. Interestingly, strains belonging to clonal complex 271 (CC271) contain both PI-1 and PI-2, as revealed by genome analyses. In these strains both pili are surface exposed and independently assembled. Furthermore, in vitro experiments provide evidence that the pilus encoded by PI-2 of S. pneumoniae is involved in adherence. Thus, pneumococci encode at least two types of pili that may play a role in the initial host cell contact to the respiratory tract. In addition, the pilus proteins are potential antigens for inclusion in a new generation of pneumococcal vaccines. Adherence by pili could represent important factor in bacterial community formation, since it has been demonstrated that bacterial community formation plays an important role in pneumococcal otitis media. In vitro quantification of bacterial community formation by S. pneumoniae was performed in order to investigate the possible role of pneumococcal pili to form communities. By using different growth media we were not able to see clear association between pili and community formation. But our findings revealed that strains belonging to MLST clonal complex CC15 efficiently form bacterial communities in vitro in a glucose dependent manner. We compared the genome of forty-four pneumococcal isolates discovering four open reading frames specifically associated with CC15. These four genes are annotated as members of an operon responsible for the biosynthesis of a putative lanctibiotic peptide, described to be involved in bacterial community formation. Our experiments show that the lanctibiotic operon deletion affects glucose mediated community formation in CC 15 strain INV200. Moreover, since glucose consumption during bacterial growth produce an acidic environment, we tested bacterial community formation at different pH and we showed that the lanctibiotic operon deletion affected pH mediated community formation in CC 15 strain INV200. In conclusion, these data demonstrate that the putative lanctibiotic operon is associated with pneumococcal CC 15 strains in vitro bacterial community formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classical myeloproliferative neoplasms (MPNs) are hematopoietic stem cell disorders that manifest with inflammation, promotion of atherosclerosis, hypercoagulability, fibrosis, and clonal evolution. The complex biological background lends itself to multi-omics studies. We have previously shown that reduced platelet fibrinogen receptor (PFR) expression may follow hyperactivation of plasma-dependent mechanisms, such as tissue factor (TF) release, unbalanced thrombin generation, involvement of protease-activated receptors (PARs). Acetylsalicylic acid (ASA) helped to restore the expression of PFRs. In this study, we enrolled 53 MPN patients, subjecting them to advanced genetic testing (panel of 30 genes in NGS), global coagulation testing (Rotational Thromboelastometry - ROTEM) and cytofluorometric determination of PFRs. ROTEM parameters appear to differ considerably depending on the type of pathology under investigation, cell count, and selected mutations. Essential thrombocythemia (ET) and CALR mutation appear to correlate with increased efficiency of both classical coagulation pathways, with significantly more contracted clot formation times (CFTs). In contrast, primary myelofibrosis (PMF) and polycythemia vera (PV) show greater imbalances in the hemostatic system. PV, probably due to its peculiar hematological features, shows a lengthening of the CFT and, at the same time, a selective contraction of parameters in INTEM with the increase of platelets and white blood cells. PMF - in contrast - seems to exploit the extrinsic pathway more to increase cell numbers. The presence of DNMT3A mutations is associated with reduced clotting time (CT) in EXTEM, while ASXL1 causes reduced maximal lysis (ML). EZH2 could be responsible for the elongation of CFT in INTEM assay. In addition, increased PFR expression is associated with history of hemorrhage and sustained CT time in FIBTEM under ASA prophylaxis. Our findings corroborate the existing models on the connection between fibrosis, genetic complexity, clonal progression, and hypercoagulability. Global coagulation assays and PFR expression are potentially useful tools for dynamic evaluation of treatments’ outcomes.