4 resultados para Clinical Guidelines

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The advent of distributed and heterogeneous systems has laid the foundation for the birth of new architectural paradigms, in which many separated and autonomous entities collaborate and interact to the aim of achieving complex strategic goals, impossible to be accomplished on their own. A non exhaustive list of systems targeted by such paradigms includes Business Process Management, Clinical Guidelines and Careflow Protocols, Service-Oriented and Multi-Agent Systems. It is largely recognized that engineering these systems requires novel modeling techniques. In particular, many authors are claiming that an open, declarative perspective is needed to complement the closed, procedural nature of the state of the art specification languages. For example, the ConDec language has been recently proposed to target the declarative and open specification of Business Processes, overcoming the over-specification and over-constraining issues of classical procedural approaches. On the one hand, the success of such novel modeling languages strongly depends on their usability by non-IT savvy: they must provide an appealing, intuitive graphical front-end. On the other hand, they must be prone to verification, in order to guarantee the trustworthiness and reliability of the developed model, as well as to ensure that the actual executions of the system effectively comply with it. In this dissertation, we claim that Computational Logic is a suitable framework for dealing with the specification, verification, execution, monitoring and analysis of these systems. We propose to adopt an extended version of the ConDec language for specifying interaction models with a declarative, open flavor. We show how all the (extended) ConDec constructs can be automatically translated to the CLIMB Computational Logic-based language, and illustrate how its corresponding reasoning techniques can be successfully exploited to provide support and verification capabilities along the whole life cycle of the targeted systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Falls are caused by complex interaction between multiple risk factors which may be modified by age, disease and environment. A variety of methods and tools for fall risk assessment have been proposed, but none of which is universally accepted. Existing tools are generally not capable of providing a quantitative predictive assessment of fall risk. The need for objective, cost-effective and clinically applicable methods would enable quantitative assessment of fall risk on a subject-specific basis. Tracking objectively falls risk could provide timely feedback about the effectiveness of administered interventions enabling intervention strategies to be modified or changed if found to be ineffective. Moreover, some of the fundamental factors leading to falls and what actually happens during a fall remain unclear. Objectively documented and measured falls are needed to improve knowledge of fall in order to develop more effective prevention strategies and prolong independent living. In the last decade, several research groups have developed sensor-based automatic or semi-automatic fall risk assessment tools using wearable inertial sensors. This approach may also serve to detect falls. At the moment, i) several fall-risk assessment studies based on inertial sensors, even if promising, lack of a biomechanical model-based approach which could provide accurate and more detailed measurements of interests (e.g., joint moments, forces) and ii) the number of published real-world fall data of older people in a real-world environment is minimal since most authors have used simulations with healthy volunteers as a surrogate for real-world falls. With these limitations in mind, this thesis aims i) to suggest a novel method for the kinematics and dynamics evaluation of functional motor tasks, often used in clinics for the fall-risk evaluation, through a body sensor network and a biomechanical approach and ii) to define the guidelines for a fall detection algorithm based on a real-world fall database availability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular radiotherapy (MRT) is a fast developing and promising treatment for metastasised neuroendocrine tumours. Efficacy of MRT is based on the capability to selectively "deliver" radiation to tumour cells, minimizing administered dose to normal tissues. Outcome of MRT depends on the individual patient characteristics. For that reason, personalized treatment planning is important to improve outcomes of therapy. Dosimetry plays a key role in this setting, as it is the main physical quantity related to radiation effects on cells. Dosimetry in MRT consists in a complex series of procedures ranging from imaging quantification to dose calculation. This doctoral thesis focused on several aspects concerning the clinical implementation of absorbed dose calculations in MRT. Accuracy of SPECT/CT quantification was assessed in order to determine the optimal reconstruction parameters. A model of PVE correction was developed in order to improve the activity quantification in small volume, such us lesions in clinical patterns. Advanced dosimetric methods were compared with the aim of defining the most accurate modality, applicable in clinical routine. Also, for the first time on a large number of clinical cases, the overall uncertainty of tumour dose calculation was assessed. As part of the MRTDosimetry project, protocols for calibration of SPECT/CT systems and implementation of dosimetry were drawn up in order to provide standard guidelines to the clinics offering MRT. To estimate the risk of experiencing radio-toxicity side effects and the chance of inducing damage on neoplastic cells is crucial for patient selection and treatment planning. In this thesis, the NTCP and TCP models were derived based on clinical data as help to clinicians to decide the pharmaceutical dosage in relation to the therapy control and the limitation of damage to healthy tissues. Moreover, a model for tumour response prediction based on Machine Learning analysis was developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amid the trend of rising health expenditure in developed economies, changing the healthcare delivery models is an important point of action for service regulators to contain this trend. Such a change is mostly induced by either financial incentives or regulatory tools issued by the regulators and targeting service providers and patients. This creates a tripartite interaction between service regulators, professionals, and patients that manifests a multi-principal agent relationship, in which professionals are agents to two principals: regulators and patients. This thesis is concerned with such a multi-principal agent relationship in healthcare and attempts to investigate the determinants of the (non-)compliance to regulatory tools in light of this tripartite relationship. In addition, the thesis provides insights into the different institutional, economic, and regulatory settings, which govern the multi-principal agent relationship in healthcare in different countries. Furthermore, the thesis provides and empirically tests a conceptual framework of the possible determinants of (non-)compliance by physicians to regulatory tools issued by the regulator. The main findings of the thesis are first, in a multi-principal agent setting, the utilization of financial incentives to align the objectives of professionals and the regulator is important but not the only solution. This finding is based on the heterogeneity in the financial incentives provided to professionals in different health markets, which does not provide a one-size-fits-all model of financial incentives to influence clinical decisions. Second, soft law tools as clinical practice guidelines (CPGs) are important tools to mitigate the problems of the multi-principal agent setting in health markets as they reduce information asymmetries while preserving the autonomy of professionals. Third, CPGs are complex and heterogeneous and so are the determinants of (non-)compliance to them. Fourth, CPGs work but under conditions. Factors such as intra-professional competition between service providers or practitioners might lead to non-compliance to CPGs – if CPGs are likely to reduce the professional’s utility. Finally, different degrees of soft law mandate have different effects on providers’ compliance. Generally, the stronger the mandate, the stronger the compliance, however, even with a strong mandate, drivers such as intra-professional competition and co-management of patients by different professionals affected the (non-)compliance.