6 resultados para Climate Responsive Design
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Government policies play a critical role in influencing market conditions, institutions and overall agricultural productivity. The thesis therefore looks into the history of agriculture development in India. Taking a political economy perspective, the historical account looks at significant institutional and technological innovations carried out in pre- independent and post independent India. It further focuses on the Green Revolution in Asia, as forty years after; the agricultural community still faces the task of addressing recurrent issue of food security amidst emerging challenges, such as climate change. It examines the Green Revolution that took place in India during the late 1960s and 70s in a historical perspective, identifying two factors of institutional change and political leadership. Climate change in agriculture development has become a major concern to farmers, researchers and policy makers alike. However, there is little knowledge on the farmers’ perception to climate change and to the extent they coincide with actual climatic data. Using a qualitative approach,it looks into the perceptions of the farmers in four villages in the states of Maharashtra and Andhra Pradesh. While exploring the adaptation strategies, the chapter looks into the dynamics of who can afford a particular technology and who cannot and what leads to a particular adaptation decision thus determining the adaptive capacity in water management. The final section looks into the devolution of authority for natural resource management to local user groups through the Water Users’ Associations as an important approach to overcome the long-standing challenges of centralized state bureaucracies in India. It addresses the knowledge gap of why some local user groups are able to overcome governance challenges such as elite capture, while others-that work under the design principles developed by Elinor Ostrom. It draws conclusions on how local leadership, can be promoted to facilitate participatory irrigation management.
Resumo:
In the last decades, global food supply chains had to deal with the increasing awareness of the stakeholders and consumers about safety, quality, and sustainability. In order to address these new challenges for food supply chain systems, an integrated approach to design, control, and optimize product life cycle is required. Therefore, it is essential to introduce new models, methods, and decision-support platforms tailored to perishable products. This thesis aims to provide novel practice-ready decision-support models and methods to optimize the logistics of food items with an integrated and interdisciplinary approach. It proposes a comprehensive review of the main peculiarities of perishable products and the environmental stresses accelerating their quality decay. Then, it focuses on top-down strategies to optimize the supply chain system from the strategical to the operational decision level. Based on the criticality of the environmental conditions, the dissertation evaluates the main long-term logistics investment strategies to preserve products quality. Several models and methods are proposed to optimize the logistics decisions to enhance the sustainability of the supply chain system while guaranteeing adequate food preservation. The models and methods proposed in this dissertation promote a climate-driven approach integrating climate conditions and their consequences on the quality decay of products in innovative models supporting the logistics decisions. Given the uncertain nature of the environmental stresses affecting the product life cycle, an original stochastic model and solving method are proposed to support practitioners in controlling and optimizing the supply chain systems when facing uncertain scenarios. The application of the proposed decision-support methods to real case studies proved their effectiveness in increasing the sustainability of the perishable product life cycle. The dissertation also presents an industry application of a global food supply chain system, further demonstrating how the proposed models and tools can be integrated to provide significant savings and sustainability improvements.
Resumo:
This final thesis is aimed at summarizing the research program I have carried out during my PhD studies, that has been dealing with the design, the preparation, characterization and applications of new Re(I), Ru(II), and Ir(III) metal complexes containing anionic ligands such as 5-aryl tetrazolates [R-CN4]- or their neutral analogues, N-alkyltetrazoles [R-CN4-R1]. Chapter 1 consists of a brief introduction on tetrazoles and metal-tetrazolato complexes, and on the photophysical properties of d6 transition metal complexes. In chapter 2, the synthesis, characterization and study of the photophysical properties of new luminescent Ir(III)-tetrazolate complexes are discussed. Moreover, the application of one of the new Ir(III)-CN complexes as emissive core in the fabrication of an OLED device is reported. In chapter 3, the study of the antimicrobial activity of new Ru(II)-alkyltetrazole complexes is reported. When the pentatomic ring was substituted with a long alkyl residue, antimicrobial activity toward Deinococcus radiodurans was observed. In chapter 4, a new family of luminescent Re(I)-tetrazolate complexes is reported. In this study, different N-alkyl tetrazoles play the role of diimine (diim) ligands in the preparation of new Re(I) tricarbonyl complexes. In addition, absorption and emission titration experiments were performed to study their interaction with Bovine Serum Albumin (BSA). In chapter 5, the synthesis and characterization of new luminescent Re(I)-tetrazolate complexes are discussed. The use of sulfonated diimine ligands in the preparation of new Re(I) tricarbonyl complexes led to the first example Re(I) complexes for the luminescent staining of proteins. In chapter 6, the synthesis, a new family of Ir(III)-NO2 tetrazole complexes displaying unexpected photophysical properties are discussed. Moreover, the possibility to tune the luminescent output of such systems upon chemical modification of the pending nitro group was verified by performing reduction tests with sodium dithionite; this represents encouraging evidence for their possible application as hypoxia-responsive luminescent probes in bioimaging.
Resumo:
La ricerca indaga il rapporto tra Design e Innovazione Responsabile calandolo all’interno della relazione tra territorio e pratiche collaborative guidate dal design, ma anche legate al patrimonio culturale immateriale e a un sistema di conoscenza a quintupla elica. La necessità emergente di cura del futuro porta a rivedere il contesto del territorio come campo strumentale per la trasformazione degli individui e della comunità e a domandarsi in che modo il design possa supportare questo cambiamento, abilitando la produzione di conoscenza collaborativa. La ricerca parte dal dimostrare come il modello di innovazione recentemente proposto dalla Comunità Europea attraverso il concetto di Responsible Research Innovation (RRI), poi ripreso nella nozione di Responsible Innovation (RI), sia un campo aperto e responsivo: se integrato con altre discipline, in particolare con il design, può supportare lo sviluppo di processi, politiche, prodotti, servizi e comportamenti che rispettino la relazione tra società, ambiente, identità individuale e collettiva e i ritmi ad essi connessi. Partendo dal contesto sopra descritto, ci si chiede come il design e il designer possano integrare le dimensioni RI nei processi di progettazione, per innovare in modo collaborativo i territori. Si individua quindi nell’Advanced Design la metodologia che, grazie alla sua natura anticipatrice, collaborativa, trasformativa, riesce a coniugarsi virtuosamente con l’approccio RI e supportare il cambiamento in atto. L’intersezione di questi elementi porta alla creazione del Modello Advanced Design per/con l’Innovazione Responsabile (ADIR): un sistema multidimensionale per gruppi di innovazione (quintupla elica) che hanno l’obiettivo di rigenerare in modo collaborativo e inclusivo i territori. L’esperienza sul campo ha confermato come la struttura del modello, formata da un corpus di semi-lavorati, permetta di creare un proprio ritmo, una compenetrazione tra azioni e forme progettuali volti a mantenere il senso di comunità e il coinvolgimento degli attori, a creare relazioni, a sviluppare una trasformazione continua.
Resumo:
This work aims at exploring the relationship between business cycles, having frequencies rooted in the short run, and climatic phenomena, which span longer time horizons. The ultimate goal is to provide a theoretical framework to address these questions: How could very long run considerations affect short run economic decisions? How short run and transitory decisions could exert a long lasting effect on climate? This is achieved by means of an off-the-shelf real business cycle (RBC) model augmented so as to include a climatic block. The economy is perturbed by a technology shock and an energy-price shock. In general, the model performs relatively well in reproducing the cyclical characteristics of the economic variables; however, it is not as successful in capturing the cyclical behavior of climatic variables. Finally, it proposes a set of policy experiments, all taking the form of an energy tax directly or indirectly linked to the climatic status. As a matter of fact the effect of any tax responsive to the business cycle shows positive aspects: when a technology shock hits the economy, it mitigates global warming with minor costs in terms of potential output losses. It also protects the economy from an increase in energy prices, sustaining a certain level of output despite the fall in fossil energy use.
Resumo:
Low-molecular-weight (LMW) gels are a versatile class of soft materials that gained increasing interest over the last few decades. They are made of a small percentage, often lower than 1.0 %, of organic molecules called gelators, dispersed in a liquid medium. Such molecules have a molecular weight usually lower than 1 kDa. The gelator molecules start to interact after the addition of a trigger, and form fibres, whose entanglement traps the solvent through capillary forces. A plethora of LMW gelators have been designed, including short peptides. Such gelators present several advantages: the synthesis is easy and can be easily scaled up; they are usually biocompatible and biodegradable; the gelation phenomenon can be rationalised by making small variation on the peptide scaffold; they find application in several fields. In this thesis, an overview of several peptide based LMW gels is presented. In each study, the gelation conditions were carefully studied, and the final materials were thoroughly investigated. First, the gelation ability of a fluorinated phenylalanine was assessed, to understand how the presence of a rigid moiety and the presence of fluorine may influence the gelation. In this context, a method for the dissolution of sensitive gelators was studied. Then, the control over the gel formation was studied both over time and space, taking advantage of either the pH-annealing of the gel or the reaction-diffusion of a hydrolysing reagent. Some gels were probed for various applications. Due to their ability of trapping water and organic solvents, we used gels for trapping pollutants dissolved in water, as well as a medium for the controlled release of either fragrances or bioactive compounds. Finally, the interaction of the gel matrix with a light-responsive molecule was assessed to understand wether the gel properties or the interaction of the additive with light were affected.