2 resultados para Classification Rules

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research project is based on the Multimodal Corpus of Chinese Court Interpreting (MUCCCI [mutʃɪ]), a small-scale multimodal corpus on the basis of eight authentic court hearings with Chinese-English interpreting in Mainland China. The corpus has approximately 92,500 word tokens in total. Besides the transcription of linguistic and para-linguistic features, utilizing the facial expression classification rules suggested by Black and Yacoob (1995), MUCCCI also includes approximately 1,200 annotations of facial expressions linked to the six basic types of human emotions, namely, anger, disgust, happiness, surprise, sadness, and fear (Black & Yacoob, 1995). This thesis is an example of conducting qualitative analysis on interpreter-mediated courtroom interactions through a multimodal corpus. In particular, miscommunication events (MEs) and the reasons behind them were investigated in detail. During the analysis, although queries were conducted based on non-verbal annotations when searching for MEs, both verbal and non-verbal features were considered indispensable parts contributing to the entire context. This thesis also includes a detailed description of the compilation process of MUCCCI utilizing ELAN, from data collection to transcription, POS tagging and non-verbal annotation. The research aims at assessing the possibility and feasibility of conducting qualitative analysis through a multimodal corpus of court interpreting. The concept of integrating both verbal and non-verbal features to contribute to the entire context is emphasized. The qualitative analysis focusing on MEs can provide an inspiration for improving court interpreters’ performances. All the constraints and difficulties presented can be regarded as a reference for similar research in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This Thesis is composed of a collection of works written in the period 2019-2022, whose aim is to find methodologies of Artificial Intelligence (AI) and Machine Learning to detect and classify patterns and rules in argumentative and legal texts. We define our approach “hybrid”, since we aimed at designing hybrid combinations of symbolic and sub-symbolic AI, involving both “top-down” structured knowledge and “bottom-up” data-driven knowledge. A first group of works is dedicated to the classification of argumentative patterns. Following the Waltonian model of argument and the related theory of Argumentation Schemes, these works focused on the detection of argumentative support and opposition, showing that argumentative evidences can be classified at fine-grained levels without resorting to highly engineered features. To show this, our methods involved not only traditional approaches such as TFIDF, but also some novel methods based on Tree Kernel algorithms. After the encouraging results of this first phase, we explored the use of a some emerging methodologies promoted by actors like Google, which have deeply changed NLP since 2018-19 — i.e., Transfer Learning and language models. These new methodologies markedly improved our previous results, providing us with best-performing NLP tools. Using Transfer Learning, we also performed a Sequence Labelling task to recognize the exact span of argumentative components (i.e., claims and premises), thus connecting portions of natural language to portions of arguments (i.e., to the logical-inferential dimension). The last part of our work was finally dedicated to the employment of Transfer Learning methods for the detection of rules and deontic modalities. In this case, we explored a hybrid approach which combines structured knowledge coming from two LegalXML formats (i.e., Akoma Ntoso and LegalRuleML) with sub-symbolic knowledge coming from pre-trained (and then fine-tuned) neural architectures.