3 resultados para Classical studies

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Data coming out from various researches carried out over the last years in Italy on the problem of school dispersion in secondary school show that difficulty in studying mathematics is one of the most frequent reasons of discomfort reported by students. Nevertheless, it is definitely unrealistic to think we can do without such knowledge in today society: mathematics is largely taught in secondary school and it is not confined within technical-scientific courses only. It is reasonable to say that, although students may choose academic courses that are, apparently, far away from mathematics, all students will have to come to terms, sooner or later in their life, with this subject. Among the reasons of discomfort given by the study of mathematics, some mention the very nature of this subject and in particular the complex symbolic language through which it is expressed. In fact, mathematics is a multimodal system composed by oral and written verbal texts, symbol expressions, such as formulae and equations, figures and graphs. For this, the study of mathematics represents a real challenge to those who suffer from dyslexia: this is a constitutional condition limiting people performances in relation to the activities of reading and writing and, in particular, to the study of mathematical contents. Here the difficulties in working with verbal and symbolic codes entail, in turn, difficulties in the comprehension of texts from which to deduce operations that, once combined together, would lead to the problem final solution. Information technologies may support this learning disorder effectively. However, these tools have some implementation limits, restricting their use in the study of scientific subjects. Vocal synthesis word processors are currently used to compensate difficulties in reading within the area of classical studies, but they are not used within the area of mathematics. This is because the vocal synthesis (or we should say the screen reader supporting it) is not able to interpret all that is not textual, such as symbols, images and graphs. The DISMATH software, which is the subject of this project, would allow dyslexic users to read technical-scientific documents with the help of a vocal synthesis, to understand the spatial structure of formulae and matrixes, to write documents with a technical-scientific content in a format that is compatible with main scientific editors. The system uses LaTex, a text mathematic language, as mediation system. It is set up as LaTex editor, whose graphic interface, in line with main commercial products, offers some additional specific functions with the capability to support the needs of users who are not able to manage verbal and symbolic codes on their own. LaTex is translated in real time into a standard symbolic language and it is read by vocal synthesis in natural language, in order to increase, through the bimodal representation, the ability to process information. The understanding of the mathematic formula through its reading is made possible by the deconstruction of the formula itself and its “tree” representation, so allowing to identify the logical elements composing it. Users, even without knowing LaTex language, are able to write whatever scientific document they need: in fact the symbolic elements are recalled by proper menus and automatically translated by the software managing the correct syntax. The final aim of the project, therefore, is to implement an editor enabling dyslexic people (but not only them) to manage mathematic formulae effectively, through the integration of different software tools, so allowing a better teacher/learner interaction too.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microglial involvement in neurological disorders is well-established, being microglial activation not only associated with neurotoxic consequences, but also with neuroprotective effects. The studies presented here, based on microglia rat primary cell cultures and mainly on microglial conditioned medium (MCM), show insights into the mechanism of Superoxide dismutase 1 (SOD1) and Apolipoprotein E (ApoE) secretion by microglia as well as their neuroprotective effect towards primary cerebellar granule neurons (CGNs) exposed to the dopaminergic toxin 6-hydroxydopamine (6-OHDA). SOD1 and ApoE are released respectively through non-classical lysosomal or the classical ER/Golgi-mediated secretion pathway. Microglial conditioned medium, in which SOD1 and ApoE accumulated, protected CGNs from degeneration and these effects were replicated when exogenous SOD1 or ApoE was added to a non-conditioned medium. SOD1 neuroprotective action was mediated by increased cell calcium from an external source. ApoE release is negatively affected by microglia activation, both with lipopolysaccharide (LPS) and Benzoylbenzoyl-ATP (Bz-ATP) but is stimulated by neuronal-conditioned medium as well as in microglia-neurons co-culture conditions. This neuronal-stimulated microglial ApoE release is differently regulated by activation states (i.e. LPS vs ATP) and by 6-hydroxydopamine-induced neurodegeneration. In co-culture conditions, microglial ApoE release is essential for neuroprotection, since microglial ApoE silencing through siRNA abrogated protection of cerebellar granule neurons against 6-OHDA toxicity. Therefore, these molecules could represent a target for manipulation aimed at promoting neuroprotection in brain diseases. Considering a pathological context, and the microglial ability to adopt a neuroprotective or neurotoxic profile, we characterize the microglial M1/M2 phenotype in transgenic rats (McGill-R-Thy1-APP) which reproduce extensively the Alzheimer’s-like amyloid pathology. Here, for the first time, cortical, hippocampal and cerebellar microglia of wild type and transgenic adult rats were compared, at both early and advanced stages of the pathology. In view of possible therapeutic translations, these findings are relevant to test microglial neuroprotection, in animal models of neurodegenerative diseases.