7 resultados para Classical orthogonal polynomials

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main object of this thesis is the analysis and the quantization of spinning particle models which employ extended ”one dimensional supergravity” on the worldline, and their relation to the theory of higher spin fields (HS). In the first part of this work we have described the classical theory of massless spinning particles with an SO(N) extended supergravity multiplet on the worldline, in flat and more generally in maximally symmetric backgrounds. These (non)linear sigma models describe, upon quantization, the dynamics of particles with spin N/2. Then we have analyzed carefully the quantization of spinning particles with SO(N) extended supergravity on the worldline, for every N and in every dimension D. The physical sector of the Hilbert space reveals an interesting geometrical structure: the generalized higher spin curvature (HSC). We have shown, in particular, that these models of spinning particles describe a subclass of HS fields whose equations of motions are conformally invariant at the free level; in D = 4 this subclass describes all massless representations of the Poincar´e group. In the third part of this work we have considered the one-loop quantization of SO(N) spinning particle models by studying the corresponding partition function on the circle. After the gauge fixing of the supergravity multiplet, the partition function reduces to an integral over the corresponding moduli space which have been computed by using orthogonal polynomial techniques. Finally we have extend our canonical analysis, described previously for flat space, to maximally symmetric target spaces (i.e. (A)dS background). The quantization of these models produce (A)dS HSC as the physical states of the Hilbert space; we have used an iterative procedure and Pochhammer functions to solve the differential Bianchi identity in maximally symmetric spaces. Motivated by the correspondence between SO(N) spinning particle models and HS gauge theory, and by the notorious difficulty one finds in constructing an interacting theory for fields with spin greater than two, we have used these one dimensional supergravity models to study and extract informations on HS. In the last part of this work we have constructed spinning particle models with sp(2) R symmetry, coupled to Hyper K¨ahler and Quaternionic-K¨ahler (QK) backgrounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present thesis is divided into two main research areas: Classical Cosmology and (Loop) Quantum Gravity. The first part concerns cosmological models with one phantom and one scalar field, that provide the `super-accelerated' scenario not excluded by observations, thus exploring alternatives to the standard LambdaCDM scenario. The second part concerns the spinfoam approach to (Loop) Quantum Gravity, which is an attempt to provide a `sum-over-histories' formulation of gravitational quantum transition amplitudes. The research here presented focuses on the face amplitude of a generic spinfoam model for Quantum Gravity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using a symbolic method, known in the literature as the classical umbral calculus, a symbolic representation of Lévy processes is given and a new family of time-space harmonic polynomials with respect to such processes, which includes and generalizes the exponential complete Bell polynomials, is introduced. The usefulness of time-space harmonic polynomials with respect to Lévy processes is that it is a martingale the stochastic process obtained by replacing the indeterminate x of the polynomials with a Lévy process, whereas the Lévy process does not necessarily have this property. Therefore to find such polynomials could be particularly meaningful for applications. This new family includes Hermite polynomials, time-space harmonic with respect to Brownian motion, Poisson-Charlier polynomials with respect to Poisson processes, Laguerre and actuarial polynomials with respect to Gamma processes , Meixner polynomials of the first kind with respect to Pascal processes, Euler, Bernoulli, Krawtchuk, and pseudo-Narumi polynomials with respect to suitable random walks. The role played by cumulants is stressed and brought to the light, either in the symbolic representation of Lévy processes and their infinite divisibility property, either in the generalization, via umbral Kailath-Segall formula, of the well-known formulae giving elementary symmetric polynomials in terms of power sum symmetric polynomials. The expression of the family of time-space harmonic polynomials here introduced has some connections with the so-called moment representation of various families of multivariate polynomials. Such moment representation has been studied here for the first time in connection with the time-space harmonic property with respect to suitable symbolic multivariate Lévy processes. In particular, multivariate Hermite polynomials and their properties have been studied in connection with a symbolic version of the multivariate Brownian motion, while multivariate Bernoulli and Euler polynomials are represented as powers of multivariate polynomials which are time-space harmonic with respect to suitable multivariate Lévy processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the development of quantum mechanics it has been natural to analyze the connection between classical and quantum mechanical descriptions of physical systems. In particular one should expect that in some sense when quantum mechanical effects becomes negligible the system will behave like it is dictated by classical mechanics. One famous relation between classical and quantum theory is due to Ehrenfest. This result was later developed and put on firm mathematical foundations by Hepp. He proved that matrix elements of bounded functions of quantum observables between suitable coherents states (that depend on Planck's constant h) converge to classical values evolving according to the expected classical equations when h goes to zero. His results were later generalized by Ginibre and Velo to bosonic systems with infinite degrees of freedom and scattering theory. In this thesis we study the classical limit of Nelson model, that describes non relativistic particles, whose evolution is dictated by Schrödinger equation, interacting with a scalar relativistic field, whose evolution is dictated by Klein-Gordon equation, by means of a Yukawa-type potential. The classical limit is a mean field and weak coupling limit. We proved that the transition amplitude of a creation or annihilation operator, between suitable coherent states, converges in the classical limit to the solution of the system of differential equations that describes the classical evolution of the theory. The quantum evolution operator converges to the evolution operator of fluctuations around the classical solution. Transition amplitudes of normal ordered products of creation and annihilation operators between coherent states converge to suitable products of the classical solutions. Transition amplitudes of normal ordered products of creation and annihilation operators between fixed particle states converge to an average of products of classical solutions, corresponding to different initial conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il ritrovamento della Casa dei due peristili a Phoinike ha aperto la strada a un’intensa opera di revisione di tutti i dati relativi all’edilizia domestica nella regione, con studi comparativi verso nord (Illiria meridionale) e verso sud (il resto dell’Epiro, ovvero Tesprozia e Molossia). Tutta quest’area della Grecia nord-occidentale è stata caratterizzata nell’antichità da un’urbanizzazione scarsa numericamente e tardiva cronologicamente (non prima del IV sec. a.C.), a parte ovviamente le colonie corinzio-corciresi di area Adriatico- Ionica d’età arcaica (come Ambracia, Apollonia, Epidamnos). A un’urbanistica di tipo razionale e programmato (ad es. Cassope, Orraon, Gitani in Tesprozia, Antigonea in Caonia) si associano numerosi casi di abitati cresciuti soprattutto in rapporto alla natura del suolo, spesso diseguale e montagnoso (ad es. Dymokastro/Elina in Tesprozia, Çuka e Aitoit nella Kestrine), talora semplici villaggi fortificati, privi di una vera fisionomia urbana. D’altro canto il concetto classico di polis così come lo impieghiamo normalmente per la Grecia centro-meridionale non ha valore qui, in uno stato di tipo federale e dominato dall’economia del pascolo e della selva. In questo contesto l’edilizia domestica assume caratteri differenti fra IV e I sec. a.C.: da un lato le città ortogonali ripetono schemi egualitari con poche eccezioni, soprattutto alle origini (IV sec. a.C., come a Cassope e forse a Gitani), dall’altro si delinea una spiccata differenziazione a partire dal III sec., quando si adottano modelli architettonici differenti, come i peristili, indizio di una più forte differenziazione sociale (esemplari i casi di Antigonea e anche di Byllis in Illiria meridionale). I centri minori e fortificati d’altura impiegano formule abitative più semplici, che sfruttano l’articolazione del terreno roccioso per realizzare abitazioni a quote differenti, utilizzando la roccia naturale anche come pareti o pavimenti dei vani.