6 resultados para Chromosomes, Human, Pair 1

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Allergy is a common hypersensitivity disorder that affects 15% to 20% of the population and its prevalence is increasing worldwide. Its severity correlates with the degree of eosinophil infiltration into the conjunctiva, which is mediated by chemokines that stimulate the production of adhesion molecules like intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) on the endothelial cell surface. The α4β1 and α4β7 integrins are expressed in eosinophils and contribute to their activation and infiltration in AC through the binding to VCAM-1 or fibronectin, expressed on vascular endothelial cells. Blockade of α4 integrins might be a therapeutical achievement in allergic eye diseases. DS 70, that show an IC50 in the nanomolar range against α4β1 integrin in Jurkat cells and in the eosinophilic cell line EOL-1. This compound was able to prevent cell adhesion to VCAM-1 and FN in vitro. In a scintillation proximity assay DS70 displaced 125I-FN binding to human α4β1 integrin and, in flow cytometry analysis, it antagonized the binding of a primary antibody to α4β1 integrin expressed on the Jurkat cells surface as well. Furthermore, we analysed also its effects on integrin α4β1 signalling. In an vivo model of allergic conjunctivitis, topical DS70 reduced the clinical aspects of EPR (early phase reaction) and LPR (late phase reaction), by reducing clinical score, eosinophil accumulation, mRNA levels of cytochines and chemochines pro-inflammatory and the conjunctival expression of α4 integrin. In conclusion, DS70 seems a novel antiallergic ocular agent that has significant effects on both early and late phases of ocular allergy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adhesion, immune evasion and invasion are key determinants during bacterial pathogenesis. Pathogenic bacteria possess a wide variety of surface exposed and secreted proteins which allow them to adhere to tissues, escape the immune system and spread throughout the human body. Therefore, extensive contacts between the human and the bacterial extracellular proteomes take place at the host-pathogen interface at the protein level. Recent researches emphasized the importance of a global and deeper understanding of the molecular mechanisms which underlie bacterial immune evasion and pathogenesis. Through the use of a large-scale, unbiased, protein microarray-based approach and of wide libraries of human and bacterial purified proteins, novel host-pathogen interactions were identified. This approach was first applied to Staphylococcus aureus, cause of a wide variety of diseases ranging from skin infections to endocarditis and sepsis. The screening led to the identification of several novel interactions between the human and the S. aureus extracellular proteomes. The interaction between the S. aureus immune evasion protein FLIPr (formyl-peptide receptor like-1 inhibitory protein) and the human complement component C1q, key players of the offense-defense fighting, was characterized using label-free techniques and functional assays. The same approach was also applied to Neisseria meningitidis, major cause of bacterial meningitis and fulminant sepsis worldwide. The screening led to the identification of several potential human receptors for the neisserial adhesin A (NadA), an important adhesion protein and key determinant of meningococcal interactions with the human host at various stages. The interaction between NadA and human LOX-1 (low-density oxidized lipoprotein receptor) was confirmed using label-free technologies and cell binding experiments in vitro. Taken together, these two examples provided concrete insights into S. aureus and N. meningitidis pathogenesis, and identified protein microarray coupled with appropriate validation methodologies as a powerful large scale tool for host-pathogen interactions studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The DNA topology is an important modifier of DNA functions. Torsional stress is generated when right handed DNA is either over- or underwound, producing structural deformations which drive or are driven by processes such as replication, transcription, recombination and repair. DNA topoisomerases are molecular machines that regulate the topological state of the DNA in the cell. These enzymes accomplish this task by either passing one strand of the DNA through a break in the opposing strand or by passing a region of the duplex from the same or a different molecule through a double-stranded cut generated in the DNA. Because of their ability to cut one or two strands of DNA they are also target for some of the most successful anticancer drugs used in standard combination therapies of human cancers. An effective anticancer drug is Camptothecin (CPT) that specifically targets DNA topoisomerase 1 (TOP 1). The research project of the present thesis has been focused on the role of human TOP 1 during transcription and on the transcriptional consequences associated with TOP 1 inhibition by CPT in human cell lines. Previous findings demonstrate that TOP 1 inhibition by CPT perturbs RNA polymerase (RNAP II) density at promoters and along transcribed genes suggesting an involvement of TOP 1 in RNAP II promoter proximal pausing site. Within the transcription cycle, promoter pausing is a fundamental step the importance of which has been well established as a means of coupling elongation to RNA maturation. By measuring nascent RNA transcripts bound to chromatin, we demonstrated that TOP 1 inhibition by CPT can enhance RNAP II escape from promoter proximal pausing site of the human Hypoxia Inducible Factor 1 (HIF-1) and c-MYC genes in a dose dependent manner. This effect is dependent from Cdk7/Cdk9 activities since it can be reversed by the kinases inhibitor DRB. Since CPT affects RNAP II by promoting the hyperphosphorylation of its Rpb1 subunit the findings suggest that TOP 1inhibition by CPT may increase the activity of Cdks which in turn phosphorylate the Rpb1 subunit of RNAP II enhancing its escape from pausing. Interestingly, the transcriptional consequences of CPT induced topological stress are wider than expected. CPT increased co-transcriptional splicing of exon1 and 2 and markedly affected alternative splicing at exon 11. Surprisingly despite its well-established transcription inhibitory activity, CPT can trigger the production of a novel long RNA (5’aHIF-1) antisense to the human HIF-1 mRNA and a known antisense RNA at the 3’ end of the gene, while decreasing mRNA levels. The effects require TOP 1 and are independent from CPT induced DNA damage. Thus, when the supercoiling imbalance promoted by CPT occurs at promoter, it may trigger deregulation of the RNAP II pausing, increased chromatin accessibility and activation/derepression of antisense transcripts in a Cdks dependent manner. A changed balance of antisense transcripts and mRNAs may regulate the activity of HIF-1 and contribute to the control of tumor progression After focusing our TOP 1 investigations at a single gene level, we have extended the study to the whole genome by developing the “Topo-Seq” approach which generates a map of genome-wide distribution of sites of TOP 1 activity sites in human cells. The preliminary data revealed that TOP 1 preferentially localizes at intragenic regions and in particular at 5’ and 3’ ends of genes. Surprisingly upon TOP 1 downregulation, which impairs protein expression by 80%, TOP 1 molecules are mostly localized around 3’ ends of genes, thus suggesting that its activity is essential at these regions and can be compensate at 5’ ends. The developed procedure is a pioneer tool for the detection of TOP 1 cleavage sites across the genome and can open the way to further investigations of the enzyme roles in different nuclear processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The repressor element 1-silencing transcription factor (REST) was first identified as a protein that binds to a 21-bp DNA sequence element (known as repressor element 1 (RE1)) resulting in transcriptional repression of the neural-specific genes [Chong et al., 1995; Schoenherr and Anderson, 1995]. The original proposed role for REST was that of a factor responsible for restricting neuronal gene expression to the nervous system by silencing expression of these genes in non-neuronal cells. Although it was initially thought to repress neuronal genes in non-neuronal cells, the role of REST is complex and tissue dependent. In this study I investigated any role played by REST in the induction and patterning of differentiation of SH-SY5Y human neuroblastoma cells exposed to IGF-I. and phorbol 12- myristate 13-acetate (PMA) To down-regulate REST expression we developed an antisense (AS) strategy based on the use of phosphorothioate oligonucleotides (ODNs). In order to evaluate REST mRNA levels, we developed a real-time PCR technique and REST protein levels were evaluated by western blotting. Results showed that nuclear REST is increased in SH-SY5Y neuroblastoma cells cultured in SFM and exposed to IGF-I for 2-days and it then declines in 5-day-treated cells concomitant with a progressive neurite extension. Also the phorbol ester PMA was able to increase nuclear REST levels after 3-days treatment concomitant to neuronal differentiation of neuroblastoma cells, whereas, at later stages, it is down-regulated. Supporting these data, the exposure to PKC inhibitors (GF10923X and Gö6976) and PMA (16nM) reverted the effects observed with PMA alone. REST levels were related to morphological differentiation, expression of growth coneassociated protein 43 (GAP-43; a gene not regulated by REST) and of synapsin I and βIII tubulin (genes regulated by REST), proteins involved in the early stage of neuronal development. We observed that differentiation of SH-SY5Y cells by IGF-I and PMA was accompanied by a significant increase of these neuronal markers, an effect that was concomitant with REST decrease. In order to relate the decreased REST expression with a progressive neurite extension, I investigated any possible involvement of the ubiquitin–proteasome system (UPS), a multienzymatic pathway which degrades polyubiquinated soluble cytoplasmic proteins [Pickart and Cohen, 2004]. For this purpose, SH-SY5Y cells are concomitantly exposed to PMA and the proteasome inhibitor MG132. In SH-SY5Y exposed to PMA and MG 132, we observed an inverse pattern of expression of synapsin I and β- tubulin III, two neuronal differentiation markers regulated by REST. Their cytoplasmic levels are reduced when compared to cells exposed to PMA alone, as a consequence of the increase of REST expression by proteasome inhibitor. The majority of proteasome substrates identified to date are marked for degradation by polyubiquitinylation; however, exceptions to this principle, are well documented [Hoyt and Coffino, 2004]. Interestingly, REST degradation seems to be completely ubiquitin-independent. The expression pattern of REST could be consistent with the theory that, during early neuronal differentiation induced by IGF-I and PKC, it may help to repress the expression of several genes not yet required by the differentiation program and then it declines later. Interestingly, the observation that REST expression is progressively reduced in parallel with cell proliferation seems to indicate that the role of this transcription factor could also be related to cell survival or to counteract apotosis events [Lawinger et al., 2000] although, as shown by AS-ODN experiments, it does not seem to be directly involved in cell proliferation. Therefore, the decline of REST expression is a comparatively later event during maturation of neuroroblasts in vitro. Thus, we propose that REST is regulated by growth factors, like IGF-I, and PKC activators in a time-dependent manner: it is elevated during early steps of neural induction and could contribute to down-regulate genes not yet required by the differentiation program while it declines later for the acquisition of neural phenotypes, concomitantly with a progressive neurite extension. This later decline is regulated by the proteasome system activation in an ubiquitin-indipendent way and adds more evidences to the hypothesis that REST down-regulation contributes to differentiation and arrest of proliferation of neuroblastoma cells. Finally, the glycosylation pattern of the REST protein was analysed, moving from the observation that the molecular weight calculated on REST sequence is about 116 kDa but using western blotting this transcription factor appears to have distinct apparent molecular weight (see Table 1.1): this difference could be explained by post-translational modifications of the proteins, like glycosylation. In fact recently, several studies underlined the importance of O-glycosylation in modulating transcriptional silencing, protein phosphorylation, protein degradation by proteasome and protein–protein interactions [Julenius et al., 2005; Zachara and Hart, 2006]. Deglycosilating analysis showed that REST protein in SH-SY5Y and HEK293 cells is Oglycosylated and not N-glycosylated. Moreover, using several combination of deglycosilating enzymes it is possible to hypothesize the presence of Gal-β(1-3)-GalNAc residues on the endogenous REST, while β(1-4)-linked galactose residues may be present on recombinant REST protein expressed in HEK293 cells. However, the O-glycosylation process produces an immense multiplicity of chemical structures and monosaccharides must be sequentially hydrolyzed by a series of exoglycosidase. Further experiments are needed to characterize all the post-translational modification of the transcription factor REST.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Autism is a neurodevelpmental disorder characterized by impaired verbal communication, limited reciprocal social interaction, restricted interests and repetitive behaviours. Twin and family studies indicate a large genetic contribution to ASDs (Autism Spectrum Disorders). During my Ph.D. I have been involved in several projects in which I used different genetic approaches in order to identify susceptibility genes in autism on chromosomes 2, 7 and X: 1)High-density SNP association and CNV analysis of two Autism Susceptibility Loci. The International Molecular Genetic Study of Autism Consortium (IMGSAC) previously identified linkage loci on chromosomes 7 and 2, termed AUTS1 and AUTS5, respectively. In this study, we evaluated the patterns of linkage disequilibrium (LD) and the distribution of haplotype blocks, utilising data from the HapMap project, across the two strongest peaks of linkage on chromosome 2 and 7. More than 3000 SNPs have been selected in each locus in all known genes, as well as SNPs in non-genic highly conserved sequences. All markers have been genotyped to perform a high-density association analysis and to explore copy number variation within these regions. The study sample consisted of 127 and 126 multiplex families, showing linkage to the AUTS1 and AUTS5 regions, respectively, and 188 gender-matched controls. Association and CNV analysis implicated several new genes, including IMMP2L and DOCK4 on chromosome 7 and ZNF533 and NOSTRIN on the chromosome 2. Particularly, my contribution to this project focused on the characterization of the best candidate gene in each locus: On the AUTS5 locus I carried out a transcript study of ZNF533 in different human tissues to verify which isoforms and start exons were expressed. High transcript variability and a new exon, never described before, has been identified in this analysis. Furthermore, I selected 31 probands for the risk haplotype and performed a mutation screen of all known exons in order to identify novel coding variants associated to autism. On the AUTS1 locus a duplication was detected in one multiplex family that was transmitted from father to an affected son. This duplication interrupts two genes: IMMP2L and DOCK4 and warranted further analysis. Thus, I performed a screening of the cohort of IMGSAC collection (285 multiplex families), using a QMPSF assay (Quantitative Multiplex PCR of Short fluorescent Fragments) to analyse if CNVs in this genic region segregate with autism phenotype and compare their frequency with a sample of 475 UK controls. Evidence for a role of DOCK4 in autism susceptibility was supported by independent replication of association at rs2217262 and the finding of a deletion segregating in a sib-pair family. 2)Analysis of X chromosome inactivation. Skewed X chromosome inactivation (XCI) is observed in females carrying gene mutations involved in several X-linked syndromes. We aimed to estimate the role of X-linked genes in ASD susceptibility by ascertaining the XCI pattern in a sample of 543 informative mothers of children with ASD and in a sample of 164 affected girls. The study sample included families from different european consortia. I analysed the XCI inactivation pattern in a sample of italian mothers from singletons families with ASD and also a control groups (144 adult females and 40 young females). We observed no significant excess of skewed XCI in families with ASD. Interestingly, two mothers and one girl carrying known mutations in X-linked genes (NLGN3, ATRX, MECP2) showed highly skewed XCI, suggesting that ascertainment of XCI could reveal families with X-linked mutations. Linkage analysis was carried out in the subgroup of multiplex families with skewed XCI (≥80:20) and a modest increased allele sharing was obtained in the Xq27-Xq28 region, with a peak Z score of 1.75 close to rs719489. In this region FMR1 and MECP2 have been associated in some cases with austim and therefore represent candidates for the disorder. I performed a mutation screen of MECP2 in 33 unrelated probands from IMGSAC and italian families, showing XCI skewness. Recently, Xq28 duplications including MECP2, have been identified in families with MR, with asymptomatic carrier females showing extreme (>85%) skewing of XCI. For these reason I used the sample of probands from X-skewed families to perform CNV analysis by Real-time quantitative PCR. No duplications have been found in our sample. I have also confirmed all data using as alternative method the MLPA assay (Multiplex Ligation dependent Probe Amplification). 3)ASMT as functional candidate gene for autism. Recently, a possible involvement of the acetylserotonin O-methyltransferase (ASMT) gene in susceptibility to ASDs has been reported: mutation screening of the ASMT gene in 250 individuals from the PARIS collection revealed several rare variants with a likely functional role; Moreover, significant association was reported for two SNPs (rs4446909 and rs5989681) located in one of the two alternative promoters of the gene. To further investigate these findings, I carried out a replication study using a sample of 263 affected individuals from the IMGSAC collection and 390 control individuals. Several rare mutations were identified, including the splice site mutation IVS5+2T>C and the L326F substitution previously reported by Melke et al (2007), but the same rare variants have been found also in control individuals in our study. Interestingly, a new R319X stop mutation was found in a single autism proband of Italian origin and is absent from the entire control sample. Furthermore, no replication has been found in our case-control study typing the SNPs on the ASMT promoter B.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the post genomic era with the massive production of biological data the understanding of factors affecting protein stability is one of the most important and challenging tasks for highlighting the role of mutations in relation to human maladies. The problem is at the basis of what is referred to as molecular medicine with the underlying idea that pathologies can be detailed at a molecular level. To this purpose scientific efforts focus on characterising mutations that hamper protein functions and by these affect biological processes at the basis of cell physiology. New techniques have been developed with the aim of detailing single nucleotide polymorphisms (SNPs) at large in all the human chromosomes and by this information in specific databases are exponentially increasing. Eventually mutations that can be found at the DNA level, when occurring in transcribed regions may then lead to mutated proteins and this can be a serious medical problem, largely affecting the phenotype. Bioinformatics tools are urgently needed to cope with the flood of genomic data stored in database and in order to analyse the role of SNPs at the protein level. In principle several experimental and theoretical observations are suggesting that protein stability in the solvent-protein space is responsible of the correct protein functioning. Then mutations that are found disease related during DNA analysis are often assumed to perturb protein stability as well. However so far no extensive analysis at the proteome level has investigated whether this is the case. Also computationally methods have been developed to infer whether a mutation is disease related and independently whether it affects protein stability. Therefore whether the perturbation of protein stability is related to what it is routinely referred to as a disease is still a big question mark. In this work we have tried for the first time to explore the relation among mutations at the protein level and their relevance to diseases with a large-scale computational study of the data from different databases. To this aim in the first part of the thesis for each mutation type we have derived two probabilistic indices (for 141 out of 150 possible SNPs): the perturbing index (Pp), which indicates the probability that a given mutation effects protein stability considering all the “in vitro” thermodynamic data available and the disease index (Pd), which indicates the probability of a mutation to be disease related, given all the mutations that have been clinically associated so far. We find with a robust statistics that the two indexes correlate with the exception of all the mutations that are somatic cancer related. By this each mutation of the 150 can be coded by two values that allow a direct comparison with data base information. Furthermore we also implement computational methods that starting from the protein structure is suited to predict the effect of a mutation on protein stability and find that overpasses a set of other predictors performing the same task. The predictor is based on support vector machines and takes as input protein tertiary structures. We show that the predicted data well correlate with the data from the databases. All our efforts therefore add to the SNP annotation process and more importantly found the relationship among protein stability perturbation and the human variome leading to the diseasome.