2 resultados para Chemical reactors

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the first part of the research activity was to develop an aerobic cometabolic process in packed bed reactors (PBR) to treat real groundwater contaminated by trichloroethylene (TCE) and 1,1,2,2-tetrachloroethane (TeCA). In an initial screening conducted in batch bioreactors, different groundwater samples from 5 wells of the contaminated site were fed with 5 growth substrates. The work led to the selection of butane as the best growth substrate, and to the development and characterization from the site’s indigenous biomass of a suspended-cell consortium capable to degrade TCE with a 90 % mineralization of the organic chlorine. A kinetic study conducted in batch and continuous flow PBRs and led to the identification of the best carrier. A kinetic study of butane and TCE biodegradation indicated that the attached-cell consortium is characterized by a lower TCE specific degredation rates and by a lower level of mutual butane-TCE inhibition. A 31 L bioreactor was designed and set up for upscaling the experiment. The second part of the research focused on the biodegradation of 4 polymers, with and with-out chemical pre-treatments: linear low density polyethylene (LLDPE), polyethylene (PP), polystyrene (PS) and polyvinyl chloride (PVC). Initially, the 4 polymers were subjected to different chemical pre-treatments: ozonation and UV/ozonation, in gaseous and aqueous phase. It was found that, for LLDPE and PP, the coupling UV and ozone in gas phase is the most effective way to oxidize the polymers and to generate carbonyl groups on the polymer surface. In further tests, the effect of chemical pretreatment on polyner biodegrability was studied. Gas-phase ozonated and virgin polymers were incubated aerobically with: (a) a pure strain, (b) a mixed culture of bacteria; and (c) a fungal culture, together with saccharose as a co-substrate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

My Ph.D. thesis was dedicated to the exploration of different paths to convert sunlight into the shape of chemical bonds, by the formation of solar fuels. During the past three years, I have focused my research on two of these, namely molecular hydrogen H2 and the reduced nicotinamide adenine dinucleotide enzyme cofactor NAD(P)H. The first could become the ideal energy carrier for a truly clean energy system; it currently represents the best chance to liberate humanity from its dependence on fossil fuels. To address this, I studied different systems which can achieve proton reduction upon light absorption. More specifically, part of my work was aimed to the development of a cost-effective and stable catalyst in combination with a well-known photochemical cycle. To this extent, I worked on transition metal oxides which, as demonstrated in this work, have been identified as promising H2 evolution catalysts, showing excellent activity, stability, and previously unreported versatility. Another branch of my work on hydrogen production dealt with the use of a new class of polymeric semiconductor materials to absorb light and convert it into H2. The second solar fuel mentioned above is a key component of the most powerful methods for chemical synthesis: enzyme catalysis. The high cost of the reduced forms prohibits large-scale utilization, so artificial photosynthetic approaches for regenerating it are being intensively studied. The first system I developed exploits the tremendous reducing properties of a scarcely known ruthenium complex which is able to reduce NAD+. Lastly, I sought to revert the classical role of the sacrificial electron donor to an active component of the system and, to boost the process, I build up an autonomous microfluidic system able to generate highly reproducible NAD(P)H amount, demonstrating the superior performance of microfluidic reactors over batch and representing another successful photochemical NAD(P)H regeneration system.