4 resultados para Charmed mesons
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In high-energy hadron collisions, the production at parton level of heavy-flavour quarks (charm and bottom) is described by perturbative Quantum Chromo-dynamics (pQCD) calculations, given the hard scale set by the quark masses. However, in hadron-hadron collisions, the predictions of the heavy-flavour hadrons eventually produced entail the knowledge of the parton distribution functions, as well as an accurate description of the hadronisation process. The latter is taken into account via the fragmentation functions measured at e$^+$e$^-$ colliders or in ep collisions, but several observations in LHC Run 1 and Run 2 data challenged this picture. In this dissertation, I studied the charm hadronisation in proton-proton collision at $\sqrt{s}$ = 13 TeV with the ALICE experiment at the LHC, making use of a large statistic data sample collected during LHC Run 2. The production of heavy-flavour in this collision system will be discussed, also describing various hadronisation models implemented in commonly used event generators, which try to reproduce experimental data, taking into account the unexpected results at LHC regarding the enhanced production of charmed baryons. The role of multiple parton interaction (MPI) will also be presented and how it affects the total charm production as a function of multiplicity. The ALICE apparatus will be described before moving to the experimental results, which are related to the measurement of relative production rates of the charm hadrons $\Sigma_c^{0,++}$ and $\Lambda_c^+$, which allow us to study the hadronisation mechanisms of charm quarks and to give constraints to different hadronisation models. Furthermore, the analysis of D mesons ($D^{0}$, $D^{+}$ and $D^{*+}$) as a function of charged-particle multiplicity and spherocity will be shown, investigating the role of multi-parton interactions. This research is relevant per se and for the mission of the ALICE experiment at the LHC, which is devoted to the study of Quark-Gluon Plasma.
Resumo:
Ultra-relativistic heavy ions generate strong electromagnetic fields which offer the possibility to study γ-γ and γ-nucleus processes at the LHC in the so called ultra-peripheral collisions (UPC). The photoproduction of J/ψ vector mesons in UPC is sensitive to the gluon distribution of the interacting nuclei. In this thesis the study of coherent and incoherent J/ψ production in Pb-Pb collisions at √sNN = 2.76 TeV is described. The J/ψ has been measured via its leptonic decay in the rapidity range -0.9 < y < 0.9. The cross section for coherent and incoherent J/ψ are given. The results are compared to theoretical models for J/ψ production and the coherent cross section is found to be in good agreement with those models which include nuclear gluon shadowing consistent with EPS09 parametrization. In addition the cross section for the process γ γ→ e+e− has been measured and found to be in agreement with the STARLIGHT Monte Carlo predictions. The analysis has been published by the ALICE Collaboration in the European Physical Journal C, with one of its main plot depicted on the cover-front of the November 2013 issue.
Resumo:
A search for time-integrated violation of the CP symmetry, ACP(K−K+), in the Cabibbo-suppressed D0 → K−K+ decays is performed at the LHCb detector using proton- proton collisions recorded from 2015 to 2018 at the centre of mass energy of 13 TeV. The data used corresponds to an integrated luminosity of 5.7 fb−1. The flavour of the charm mesons is defined from the charge of the pion in D∗+ → D0π+ and D∗− → D0π− decays. Nuisance asymmetries are constrained from D∗+ → D0(→ K−π+)π+, D+ → KS0π+, D+ → K−π+π+, Ds+ → KS0K+ and Ds+ → φπ+ decays. The ACP(K−K+) asymme- try is measured to be ACP (K−K+) = (6.8 ± 5.4 (stat) ± 1.6 (syst)) · 10−4, in agreement with the previous LHCb results and the current world average. This represents the world’s most precise measurement of this quantity to date. Combining ACP (K−K+) with the time-integrated CP asymmetry difference, ∆ACP = ACP (K−K+)− ACP (π−π+), and the time-dependent CP asymmetry, ∆Y , measured with D0 → K−K+ and D0 → π−π+ decays, the direct CP asymmetries in D0 → K−K+ and D0 → π−π+ decays, adKK and adππ, result to be adKK =(7.7±5.7)·10−4, adππ =(23.2±6.1)·10−4, where the errors include systematic and statistical uncertainties and the correlation be- tween the two values is ρ(adKK,adππ) = 0.88. The values differ from zero for 1.4 and 3.8 standard deviations, respectively. In particular, adππ shows an evidence for direct CP violation in D0 → π−π+ decays.