8 resultados para Charm in matter
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Il coordinamento tra sistemi impositivi è una questione originaria e tipica del diritto comunitario. La tesi ne esplora le conseguenze sotto più aspetti.
Resumo:
La tesi analizza i rapporti tra l’ordinamento italiano e la Cedu, in particolare la collocazione della Cedu all’interno del sistema delle fonti alla luce della modifica dell’art. 117, comma 1 Cost. Si tratta di un tema molto dibattuto in dottrina, specialmente a seguito dell’entrata in vigore del Trattato di Lisbona. Questa tematica risulta strettamente connessa al profilo dell’interazione tra la Corte di Strasburgo e la Corte costituzionale e i giudici ordinari. L’analisi del profilo statico concernente lo status della Cedu nel sistema italiano deve quindi essere accompagnata dall’esame del profilo dinamico, relativo al ruolo della giurisprudenza della Corte di Strasburgo nell’esperienza dell’ordinamento nazionale. Entrambi i profili di indagine sono esaminati alla luce delle indicazioni provenienti dalla giurisprudenza della Corte costituzionale, della Corte di Cassazione e della Corte di Strasburgo. Prima di essere esaminate singolarmente, queste tematiche richiedono la preliminare ricognizione dei termini della dicotomia tra i due modelli concettuali di riferimento in tema di rapporti interordinamentali: il monismo e il dualismo. Trasferite nel peculiare contesto del sistema Cedu, tali categorie dogmatiche si arricchiscono di ulteriori profili, che esorbitano dalla sistemazione del rapporto tra fonti. La tenuta dei due paradigmi concettuali, che sono nati ed operano nel contesto della teorica delle fonti, deve essere verificata anche rispetto all’attuale fenomeno della produzione europea di diritto giurisprudenziale ed alla capacità paradigmatica assunta dalla giurisprudenza di Strasburgo. Il diritto e le istituzioni giuridiche tendono ad assumere sempre più sembianze giurisdizionali, generando un’osmosi che porta a trasferire il focus dai rapporti interordinamentali ai rapporti tra giurisprudenze.
Resumo:
I have studied entropy profiles obtained in a sample of 24 X-ray objects at high redshift retrieved from the Chandra archive. I have discussed the scaling properties of the entropy S, the correlation between metallicity Z and S, the profiles of the temperature of the gas, Tgas, and performed a comparison between the dark matter 'temperature' and Tgas in order to constrain the non-gravitational processes which affect the thermal history of the gas. Furthermore I have studied the scaling relations between the X-ray quantities and Sunyaev Zel'dovich measurements. I have observed that X-ray laws are steeper than the relations predicted from the adiabatic model. These deviations from expectations based on self-similarity are usually interpreted in terms of feedback processes leading to non-gravitational gas heating, and suggesting a scenario in which the ICM at higher redshift has lower both X-ray luminosity and pressure in the central regions than the expectations from self-similar model. I have also investigated a Bayesian X-ray and Sunyaev Zel'dovich analysis, which allows to study the external regions of the clusters well beyond the volumes resolved with X-ray observations (1/3-1/2 of the virial radius), to measure the deprojected physical cluster properties, like temperature, density, entropy, gas mass and total mass up to the virial radius.
Resumo:
Seyfert galaxies are the closest active galactic nuclei. As such, we can use
them to test the physical properties of the entire class of objects. To investigate
their general properties, I took advantage of different methods of data analysis. In
particular I used three different samples of objects, that, despite frequent overlaps,
have been chosen to best tackle different topics: the heterogeneous BeppoS AX
sample was thought to be optimized to test the average hard X-ray (E above 10 keV)
properties of nearby Seyfert galaxies; the X-CfA was thought the be optimized to
compare the properties of low-luminosity sources to the ones of higher luminosity
and, thus, it was also used to test the emission mechanism models; finally, the
XMM–Newton sample was extracted from the X-CfA sample so as to ensure a
truly unbiased and well defined sample of objects to define the average properties
of Seyfert galaxies.
Taking advantage of the broad-band coverage of the BeppoS AX MECS and
PDS instruments (between ~2-100 keV), I infer the average X-ray spectral propertiesof nearby Seyfert galaxies and in particular the photon index (
Resumo:
The present thesis is divided into two main research areas: Classical Cosmology and (Loop) Quantum Gravity. The first part concerns cosmological models with one phantom and one scalar field, that provide the `super-accelerated' scenario not excluded by observations, thus exploring alternatives to the standard LambdaCDM scenario. The second part concerns the spinfoam approach to (Loop) Quantum Gravity, which is an attempt to provide a `sum-over-histories' formulation of gravitational quantum transition amplitudes. The research here presented focuses on the face amplitude of a generic spinfoam model for Quantum Gravity.
Resumo:
In two Italian sites, multiaxis trees slightly reduced primary axis length and secondary axis length of newly grafted trees, and increased the number of secondary shoots. The total length, node production, and total dry matter gain were proportional to the number of axis. Growth of both primary and secondary shoots, and dry matter accumulation, have been found to be also well related to rootstock vigour. A great variability in axillary shoot production was recorded among different environments. Grafted trees had higher primary growth, secondary axis growth, and dry matter gain than chip budded trees. Stem water potential measured in the second year after grafting was not affected by rootstocks or number of leaders. Measurements performed in New Zealand (Hawke’s Bay) during the second year after grafting revealed that both final length and growth rate of primary and secondary axis were related to the rootstock rather than to the training system. Dwarfing rootstocks reduced the number of long vegetative shoots and increased the proportion of less vigorous shoots.
Resumo:
The way mass is distributed in galaxies plays a major role in shaping their evolution across cosmic time. The galaxy's total mass is usually determined by tracing the motion of stars in its potential, which can be probed observationally by measuring stellar spectra at different distances from the galactic centre, whose kinematics is used to constrain dynamical models. A class of such models, commonly used to accurately determine the distribution of luminous and dark matter in galaxies, is that of equilibrium models. In this Thesis, a novel approach to the design of equilibrium dynamical models, in which the distribution function is an analytic function of the action integrals, is presented. Axisymmetric and rotating models are used to explain observations of a sample of nearby early-type galaxies in the Calar Alto Legacy Integral Field Area survey. Photometric and spectroscopic data for round and flattened galaxies are well fitted by the models, which are then used to get the galaxies' total mass distribution and orbital anisotropy. The time evolution of massive early-type galaxies is also investigated with numerical models. Their structural properties (mass, size, velocity dispersion) are observed to evolve, on average, with redshift. In particular, they appear to be significantly more compact at higher redshift, at fixed stellar mass, so it is interesting to investigate what drives such evolution. This Thesis focuses on the role played by dark-matter haloes: their mass-size and mass-velocity dispersion correlations evolve similarly to the analogous correlations of ellipticals; at fixed halo mass, the haloes are more compact at higher redshift, similarly to massive galaxies; a simple model, in which all the galaxy's size and velocity-dispersion evolution is due to the cosmological evolution of the underlying halo population, reproduces the observed size and velocity-dispersion of massive compact early-type galaxies up to redshift of about 2.