3 resultados para Charged leptons

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charmless charged two-body B decays are sensitive probes of the CKM matrix, that parameterize CP violation in the Standard Model (SM), and have the potential to reveal the presence of New Physics. The framework of CP violation within the SM, the role of the CKM matrix, with its basic formalism, and the current experimental status are presented. The theoretical tools commonly used to deal with hadronic B decays and an overview of the phenomenology of charmless two-body B decays are outlined. LHCb is one of the four main experiments operating at the Large Hadron Collider (LHC), devoted to the measurement of CP violation and rare decays of charm and beauty hadrons. The LHCb detector is described, focusing on the technologies adopted for each sub-detector and summarizing their performances. The status-of-the-art of the LHCb measurements with charmless two-body B decays is then presented. Using the 37/pb of integrated luminosity collected at sqrt(s) = 7 TeV by LHCb during 2010, the direct CP asymmetries ACP(B0 -> Kpi) = −0.074 +/- 0.033 +/- 0.008 and ACP(Bs -> piK) = 0.15 +/- 0.19 +/- 0.02 are measured. Using 320/pb of integrated luminosity collected during 2011 these measurements are updated to ACP(B0 -> Kpi) = −0.088 +/- 0.011 +/- 0.008 and ACP(Bs -> piK) = 0.27 +/- 0.08 +/- 0.02. In addition, the branching ratios BR(B0 -> K+K-) = (0.13+0.06-0.05 +/- 0.07) x 10^-6 and BR(Bs -> pi+pi-) = (0.98+0.23-0.19 +/- 0.11) x 10^-6 are measured. Finally, using a sample of 370/pb of integrated luminosity collected during 2011, the relative branching ratios BR(B0 -> pi+pi-)/BR(B0 -> Kpi) = 0.262 +/- 0.009 +/- 0.017, (fs/fd)BR(Bs -> K+K-)/BR(B0 -> Kpi)=0.316 +/- 0.009 +/- 0.019, (fs/fd)BR(Bs -> piK)/BR(B0 -> Kpi) = 0.074 +/- 0.006 +/- 0.006 and BR(Lambda_b -> ppi)/BR(Lambda_b -> pK)=0.86 +/- 0.08 +/- 0.05 are determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main targets of the CMS experiment is to search for the Standard Model Higgs boson. The 4-lepton channel (from the Higgs decay h->ZZ->4l, l = e,mu) is one of the most promising. The analysis is based on the identification of two opposite-sign, same-flavor lepton pairs: leptons are required to be isolated and to come from the same primary vertex. The Higgs would be statistically revealed by the presence of a resonance peak in the 4-lepton invariant mass distribution. The 4-lepton analysis at CMS is presented, spanning on its most important aspects: lepton identification, variables of isolation, impact parameter, kinematics, event selection, background control and statistical analysis of results. The search leads to an evidence for a signal presence with a statistical significance of more than four standard deviations. The excess of data, with respect to the background-only predictions, indicates the presence of a new boson, with a mass of about 126 GeV/c2 , decaying to two Z bosons, whose characteristics are compatible with the SM Higgs ones.