5 resultados para Cell concentrations
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Microalgae are sun - light cell factories that convert carbon dioxide to biofuels, foods, feeds, and other bioproducts. The concept of microalgae cultivation as an integrated system in wastewater treatment has optimized the potential of the microalgae - based biofuel production. These microorganisms contains lipids, polysaccharides, proteins, pigments and other cell compounds, and their biomass can provide different kinds of biofuels such as biodiesel, biomethane and ethanol. The algal biomass application strongly depends on the cell composition and the production of biofuels appears to be economically convenient only in conjunction with wastewater treatment. The aim of this research thesis was to investigate a biological wastewater system on a laboratory scale growing a newly isolated freshwater microalgae, Desmodesmus communis, in effluents generated by a local wastewater reclamation facility in Cesena (Emilia Romagna, Italy) in batch and semi - continuous cultures. This work showed the potential utilization of this microorganism in an algae - based wastewater treatment; Desmodesmus communis had a great capacity to grow in the wastewater, competing with other microorganisms naturally present and adapting to various environmental conditions such as different irradiance levels and nutrient concentrations. The nutrient removal efficiency was characterized at different hydraulic retention times as well as the algal growth rate and biomass composition in terms of proteins, polysaccharides, total lipids and total fatty acids (TFAs) which are considered the substrate for biodiesel production. The biochemical analyses were coupled with the biomass elemental analysis which specified the amount of carbon and nitrogen in the algal biomass. Furthermore photosynthetic investigations were carried out to better correlate the environmental conditions with the physiology responses of the cells and consequently get more information to optimize the growth rate and the increase of TFAs and C/N ratio, cellular compounds and biomass parameter which are fundamental in the biomass energy recovery.
Resumo:
Mitochondria have a central role in energy supply in cells, ROS production and apoptosis and have been implicated in several human disease and mitochondrial dysfunctions in hypoxia have been related with disorders like Type II Diabetes, Alzheimer Disease, inflammation, cancer and ischemia/reperfusion in heart. When oxygen availability becomes limiting in cells, mitochondrial functions are modulated to allow biologic adaptation. Cells exposed to a reduced oxygen concentration readily respond by adaptive mechanisms to maintain the physiological ATP/ADP ratio, essential for their functions and survival. In the beginning, the AMP-activated protein kinase (AMPK) pathway is activated, but the responsiveness to prolonged hypoxia requires the stimulation of hypoxia-inducible factors (HIFs). In this work we report a study of the mitochondrial bioenergetics of primary cells exposed to a prolonged hypoxic period . To shine light on this issue we examined the bioenergetics of fibroblast mitochondria cultured in hypoxic atmospheres (1% O2) for 72 hours. Here we report on the mitochondrial organization in cells and on their contribution to the cellular energy state. Our results indicate that prolonged hypoxia cause a significant reduction of mitochondrial mass and of the quantity of the oxidative phosphorylation complexes. Hypoxia is also responsible to damage mitochondrial complexes as shown after normalization versus citrate synthase activity. HIF-1α plays a pivotal role in wound healing, and its expression in the multistage process of normal wound healing has been well characterized, it is necessary for cell motility, expression of angiogenic growth factor and recruitment of endothelial progenitor cells. We studied hypoxia in the pathological status of diabetes and complications of diabetes and we evaluated the combined effect of hyperglycemia and hypoxia on human dermal fibroblasts (HDFs) and human dermal micro-vascular endothelial cells (HDMECs) that were grown in high glucose, low glucose concentrations and mannitol as control for the osmotic challenge.
Resumo:
The recent finding that MYC-driven cancers are sensitive to inhibition of the DNA damage response (DDR) pathway, prompted us to investigate the role of DDR pathway as therapeutic target in diffuse large B-cell lymphoma (DLBCL), which frequently overexpresses the MYC oncogene. In a preliminary immunohistochemical study conducted on 99 consecutive DLBCL patients, we found that about half of DLBCLs showed constitutive expression of the phosphorylated forms of checkpoint kinases (CHK) and CDC25c, markers of DDR activation, and of phosphorylated histone H2AX (γH2AX), marker of DNA damage and genomic instability. Constitutive γH2AX expression correlated with c-MYC levels and DDR activation, and defined a subset of tumors characterised by poor outcome. Next, we used the CHK inhibitor PF-0477736 as a tool to investigate whether the inhibition of the DDR pathway might represent a novel therapeutic approach in DLBCL. Submicromolar concentrations of PF-0477736 hindered proliferation in DLBCL cell lines with activated DDR pathway. These results were fully recapitulated with a different CHK inhibitor (AZD-7762). Inhibition of checkpoint kinases induced rapid DNA damage accumulation and apoptosis in DLBCL cell lines and primary cells. These data suggest that pharmacologic inhibition of DDR through targeting of CHK kinases may represent a novel therapeutic strategy in DLBCL. The second part of this work is the clinical, molecular and functional description of a paradigmatic case of primary refractory Burkitt lymphoma characterized by spatial intratumor heterogeneity for the TP53 mutational status, high expression levels of genomic instability and DDR activation markers, primary resistance to chemotherapy and exquisite sensitivity to DDR inhibitors.
Resumo:
Despite numerous therapeutic interventions cancer is still today the second leading cause of death. A growing interest has been addressed to isothiocytanates and more recently, the 6- (methylsulfonyl) hexyl isothiocyanate (6-MITC), the main constituent of the rhizome of Wasabia Japonica, has stimulated the interest of researchers. Aim of the research was to study if 6-MITC is able to modulate the main mechanisms underlying chemopreventive process in leukemic cells lines, verify the selectivity of action and the safety of use in terms of mutagenicity. The study was conducted on different cell types. In particular, Jurkat and HL-60 cells were treated with increasing concentrations of 6-MITC and cell viability, induction of apoptosis, cell cycle analysis, autophagy modulation and stimulation of differentiation were evaluated by flow cytometry. PBL, the non-transformed counterparty of leukemia cells, was used to analyse the selectivity of action by studying the same mechanisms previously indicated. Finally, safety of use and antimutagenicity were studied in TK6 cells adopting an automated protocol in flow cytometry. The achieved results have demonstrated that isothiocyanate modulates many signaling pathways involved in chemopreventive mechanism. In fact, 6-MITC induces apoptosis of both transformed cells, limits tumor growth by slowing down the cell cycle of Jurkat cells and blocks HL-60 cell cycle, increases the autophagic flux and induces cytodifferentiation of promyelocytic HL-60 into macrophage and granulocytic phenotypes. Furthermore, the results obtained with 6-MITC on PBL from healthy donors suggest that the isothiocyante is a good selective cytotoxic agent. Essential feature of a good chemopreventive agent is selectivity toward cancer cells and low toxicity towards non-transformed cells. Finally, the analysis of the micronuclei revealed that 6-MITC is not mutagenic, ensuring safe use, and that instead, it is able to counteract the mutagenic activity of the aneuploidogen Vinblastine, demonstrating another important and interesting chemopreventive activity.
Resumo:
The properties of the mitochondrial F1FO-ATPase activated by the natural cofactor Mg2+ or by Ca2+, were studied, mainly on heart mitochondria from swine, widely used in translational medicine. The Ca2+ driven conformational changes in the F1FO-ATPase form the mitochondrial permeability transition pore (mPTP), which triggers regulated cell death and is involved in severe pathologies. The Ca2+-activated F1FO-ATPase hydrolyzes ATP with kinetics slightly different from those of the Mg2+-ATPase. Known F1-ATPase inhibitors inhibit both the Ca2+-activated F1FO-ATPase and the mPTP formation strengthening the molecular link between them. The different Gd3+ effects on the Ca2+- and Mg2+-activated F1FO-ATPases confirm their difference as also phenylglyoxal which preferentially inhibits the Ca2+-activated F1FO-ATPase. The effects of phenylarsine and dibromobimane, which interact with differently distant Cys thiols, show that mPTP opening is ruled by nearby or distant dithiols. Bergamot polyphenols and melatonin inhibit the mPTP and ROS formation. H2S, a known cardiovascular protector, unaffects the F1FO-ATPase, but inhibits Ca2+ absorption and indirectly the mPTP, both in swine heart and mussel midgut gland mitochondria. New generation triazoles inhibit the Ca2+-activated F1FO-ATPase and the mPTP, but unaffect the Mg2+-activated F1FOATPase. In parallel, the energy metabolism was investigated in mammalian cells. In boar sperm ATP is mainly produced by mitochondrial oxidative phosphorylation (OXPHOS), even if it decreases over time because of less active mitochondria. Insufficient ATP may induce sperm dysfunction. Also, canine mesenchymal stem cells rely on OXPHOS; those from umbilical cord which produce more ATP than those from adipose tissue, seem preferable for transplant studies. The intestinal porcine enterocyte cell line IPEC-J2, used for human gut research, responds to different fetal bovine serum concentrations by remodeling OXPHOS without altering the bioenergetic parameters. The IPEC-J2 bioenergetics is modulated by Vitamin K vitamers. These data shoulder cell bioenergetics as precious tool for medical research.