4 resultados para Cd4 Cells
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Previous studies in the group led to the identification of CD4+FOXP3- cells with regulatory functions in human blood that coproduce IL-10 and IFN-gamma. These cells do not belong to the Treg cell lineage since they are Foxp3- but they show some similarities with Th1 cells since they express CCR5, T-bet and produce high levels of IFN-gamma. Thus, they share relevant characteristics with both T regulatory type I cells (Tr1) and Th1 cells and we called them Th1-10 cells. In this study we presented a molecular characterization of Th1-10 cells that includes a gene expression and a microRNA profiling and performed functional studies to assess Th1-10 cells regulatory properties. We demonstrated that Th1-10 cells have a high regulatory potential being able to block the proliferation of activated CD4 naïve T cells to a similar extent as conventional Treg cells, and that this suppression capacity is at least partially mediated by secreted IL10. We showed also that Th1-10 cells are closely related to Th1 effector memory cells and express genes involved in cytotoxicity. In particular, they express the transcription factor EOMES and the cytotoxic effector molecules GZMA and GZMK, and they release cytotoxic granules upon stimulation. Moreover, we found that Eomes regulates cytotoxic functions in CD4+ T cells. We demonstrated that miR-92a, selectively downregulated in Th1-10 cells, directly targets the 3’UTR of EOMES.and this finding identifies miR-92a as a possible mediator of Th1-10 cytotoxicity. Th1-10 cells retain some proliferative capacity when sorted ex vivo and activated in vitro via their TCR, and this effect is markedly enhanced by IL-15, which also had a pro-survival effect on Th-10 cells. Thus, in contrast to conventional cytotoxic T cells, Th1-10 cells have cytotoxic and regulatory functions and are not terminally differentiated, since they retain proliferative capacity.
Resumo:
NGAL (Neutrophil Gelatinase-associated Lipocalin ) is a protein of lipocalin superfamily. Recent literature focused on its biomarkers function in several pathological condition (acute and chronic kidney damage, autoimmune disease, malignancy). NGAL biological role is not well elucidated. Several are the demonstration of its bacteriostatic role. Recent papers have indeed highlight NGAL role in NFkB modulation. The aim of this study is to understand whether NGAL may exert a role in the activation (modulation) of T cell response through the regulation of HLA-G complex, a mediator of tolerance. From 8 healthy donors we obtained peripheral blood mononuclear cells (PBMCs) and we isolated by centrifugation on a Ficoll gradient. Cells were then treated with four concentrations of NGAL (40-320 ng/ml) with or without iron. We performed flow cytometry analysis and ELISA test. NGAL increased the HLA-G expression on CD4+ T cells, with an increasing corresponding to the dose. Iron effect is not of unique interpretation. NGAL adiction affects regulatory T cells increasing in vitro expansion of CD4+ CD25+ FoxP3+ cells. Neutralizing antibody against NGAL decreased HLA-G expression and reduced significantly CD4+ CD25+ FoxP3+ cells percentage. In conclusion, we provided in vitro evidence of NGAL involvement in cellular immunity. The potential role of NGAL as an immunomodulatory molecule has been evaluated: it has been shown that NGAL plays a pivotal role in the induction of immune tolerance up regulating HLA-G and T regulatory cells expression in healthy donors. As potential future scenario we highlight the in vivo role of NGAL in immunology and immunomodulation, and its possible relationship with immunosuppressive therapy efficacy, tolerance induction in transplant patients, and/or in other immunological disorders.
Resumo:
Solid organ transplantation (SOT) is considered the treatment of choice for many end-stage organ diseases. Thus far, short term results are excellent, with patient survival rates greater than 90% one year post-surgery, but there are several problems with the long term acceptance and use of immunosuppressive drugs. Hematopoietic Stem Cells Transplantation (HSCT) concerns the infusion of haematopoietic stem cells to re-establish acquired and congenital disorders of the hematopoietic system. The main side effect is the Graft versus Host Disease (GvHD) where donor T cells can cause pathology involving the damage of host tissues. Patients undergoing acute or chronic GvHD receive immunosuppressive regimen that is responsible for several side effects. The use of immunosuppressive drugs in the setting of SOT and GvHD has markedly reduced the incidence of acute rejection and the tissue damage in GvHD however, the numerous adverse side effects observed boost the development of alternative strategies to improve the long-term outcome. To this effect, the use of CD4+CD25+FOXP3+ regulatory T cells (Treg) as a cellular therapy is an attractive approach for autoimmunity disease, GvHD and limiting immune responses to allograft after transplantation. Treg have a pivotal role in maintaining peripheral immunological tolerance, by preventing autoimmunity and chronic inflammation. Results of my thesis provide the characterization and cell processing of Tregs from healthy controls and patients in waiting list for liver transplantation, followed by the development of an efficient expansion-protocol and the investigation of the impact of the main immunosuppressive drugs on viability, proliferative capacity and function of expanded cells after expansion. The conclusion is that ex vivo expansion is necessary to infuse a high Treg dose and although many other factors in vivo can contribute to the success of Treg therapy, the infusion of Tregs during the administration of the highest dose of immunosuppressants should be carefully considered.
Resumo:
During kidney transplant procedure transplanted organs can undergo ischaemia reperfusion phenomena, often associated with the onset of acute kidney damage, loss of kidney function and rejection. These events promote cell turnover to replace damaged cells and preserve kidney function, thus cells deriving from nephrons structures are highly voided in urine. Urine derived cells represents a promising cell source since they can be easily isolated and cultured. The aim of this project was to characterise Urine-derived Renal Epithelial Cells (URECs) from transplanted kidney and to evaluate how these cells react to the co-culture with immune cells. URECs expressed typical markers of kidney tubule epithelial cells (Cytokeratin and CD13), and a subpopulation of these cells expressed CD24 and CD133, which are markers of kidney epithelial progenitor cells. The expression of immunosuppressive molecules as HLA-G and CD73 was also observed. As matter of fact, during the co-culture with PBMCs, UREC suppressed the proliferation of CD4 and CD8 Lymphocytes and reduce the T helper 1 subset, while increasing the T regulatory counterpart. Also, preliminary data observed in this study indicated that the exposition to kidney damage associated molecule, such as NGAL, could significantly affect UREC viability and immunomodulatory capacity. These results add new information about the phenotype of urine cells obtained after kidney transplant and reveal that these cells show promising immunomodulatory properties, suggesting their potential application in personalized cell therapy approaches.