2 resultados para Catastrophes naturelles

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’uso frequente dei modelli predittivi per l’analisi di sistemi complessi, naturali o artificiali, sta cambiando il tradizionale approccio alle problematiche ambientali e di rischio. Il continuo miglioramento delle capacità di elaborazione dei computer facilita l’utilizzo e la risoluzione di metodi numerici basati su una discretizzazione spazio-temporale che permette una modellizzazione predittiva di sistemi reali complessi, riproducendo l’evoluzione dei loro patterns spaziali ed calcolando il grado di precisione della simulazione. In questa tesi presentiamo una applicazione di differenti metodi predittivi (Geomatico, Reti Neurali, Land Cover Modeler e Dinamica EGO) in un’area test del Petén, Guatemala. Durante gli ultimi decenni questa regione, inclusa nella Riserva di Biosfera Maya, ha conosciuto una rapida crescita demografica ed un’incontrollata pressione sulle sue risorse naturali. L’area test puó essere suddivisa in sotto-regioni caratterizzate da differenti dinamiche di uso del suolo. Comprendere e quantificare queste differenze permette una migliore approssimazione del sistema reale; é inoltre necessario integrare tutti i parametri fisici e socio-economici, per una rappresentazione più completa della complessità dell’impatto antropico. Data l’assenza di informazioni dettagliate sull’area di studio, quasi tutti i dati sono stati ricavati dall’elaborazione di 11 immagini ETM+, TM e SPOT; abbiamo poi realizzato un’analisi multitemporale dei cambi uso del suolo passati e costruito l’input per alimentare i modelli predittivi. I dati del 1998 e 2000 sono stati usati per la fase di calibrazione per simulare i cambiamenti nella copertura terrestre del 2003, scelta come data di riferimento per la validazione dei risultati. Quest’ultima permette di evidenziare le qualità ed i limiti per ogni modello nelle differenti sub-regioni.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last decades the impact of natural disasters to the global environment is becoming more and more severe. The number of disasters has dramatically increased, as well as the cost to the global economy and the number of people affected. Among the natural disaster, flood catastrophes are considered to be the most costly, devastating, broad extent and frequent, because of the tremendous fatalities, injuries, property damage, economic and social disruption they cause to the humankind. In the last thirty years, the World has suffered from severe flooding and the huge impact of floods has caused hundreds of thousands of deaths, destruction of infrastructures, disruption of economic activity and the loss of property for worth billions of dollars. In this context, satellite remote sensing, along with Geographic Information Systems (GIS), has become a key tool in flood risk management analysis. Remote sensing for supporting various aspects of flood risk management was investigated in the present thesis. In particular, the research focused on the use of satellite images for flood mapping and monitoring, damage assessment and risk assessment. The contribution of satellite remote sensing for the delineation of flood prone zones, the identification of damaged areas and the development of hazard maps was explored referring to selected cases of study.