3 resultados para Carrier Sanctions
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In the first part of my thesis I studied the mechanism of initiation of the innate response to HSV-1. Innate immune response is the first line of defense set up by the cell to counteract pathogens infection and it is elicited by the activation of a number of membrane or intracellular receptors and sensors, collectively indicated as PRRs, Patter Recognition Receptors. We reported that the HSV pathogen-associated molecular patterns (PAMP) that activate Toll-like receptor 2 (TLR2) and lead to the initiation of innate response are the virion glycoproteins gH/gL and gB, which constitute the conserved fusion core apparatus across the Herpesvirus. Specifically gH/gL is sufficient to initiate a signaling cascade which leads to NF-κB activation. Then, by gain and loss-of-function approaches, we found that αvβ3-integrin is a sensor of and plays a crucial role in the innate defense against HSV-1. We showed that αvβ3-integrin signals through a pathway that concurs with TLR2, affects activation/induction of interferons type 1, NF-κB, and a polarized set of cytokines and receptors. Thus, we demonstrated that gH/gL is sufficient to induce IFN1 and NF-κB via this pathway. From these data, we proposed that αvβ3-integrin is considered a class of non-TLR pattern recognition receptors. In the second part of my thesis I studied the capacity of human mesenchymal stromal cells isolated by fetal membranes (FM-hMSCs) to be used as carrier cells for the delivery of retargeted R-LM249 virus. The use of systemically administrated carrier cells to deliver oncolytic viruses to tumoral targets is a promising strategy in oncolytic virotherapy. We observed that FM-hMSCs can be infected by R-LM249 and we optimized the infection condition; then we demonstrate that stromal cells sustain the replication of retargeted R-LM249 and spread it to target tumoral cells. From these preliminary data FM-hMSCs resulted suitable to be used as carrier cells
Resumo:
The recent financial crisis triggered an increasing demand for financial regulation to counteract the potential negative economic effects of the evermore complex operations and instruments available on financial markets. As a result, insider trading regulation counts amongst the relatively recent but particularly active regulation battles in Europe and overseas. Claims for more transparency and equitable securities markets proliferate, ranging from concerns about investor protection to global market stability. The internationalization of the world’s securities market has challenged traditional notions of regulation and enforcement. Considering that insider trading is currently forbidden all over Europe, this study follows a law and economics approach in identifying how this prohibition should be enforced. More precisely, the study investigates first whether criminal law is necessary under all circumstances to enforce insider trading; second, if it should be introduced at EU level. This study provides evidence of law and economics theoretical logic underlying the legal mechanisms that guide sanctioning and public enforcement of the insider trading prohibition by identifying optimal forms, natures and types of sanctions that effectively induce insider trading deterrence. The analysis further aims to reveal the economic rationality that drives the potential need for harmonization of criminal enforcement of insider trading laws within the European environment by proceeding to a comparative analysis of the current legislations of height selected Member States. This work also assesses the European Union’s most recent initiative through a critical analysis of the proposal for a Directive on criminal sanctions for Market Abuse. Based on the conclusions drawn from its close analysis, the study takes on the challenge of analyzing whether or not the actual European public enforcement of the laws prohibiting insider trading is coherent with the theoretical law and economics recommendations, and how these enforcement practices could be improved.
Resumo:
Emissions of CO2 are constantly growing since the beginning of industrial era. Interruption of the production of major emitters sectors (energy and agriculture) is not a viable way and reducing all the emission through carbon capture and storage (CCS) is not economically viable and little publicly accepted, therefore, it becomes fundamentals to take actions like retrofitting already developed infrastructure employing cleanest resources, modify the actual processes limiting the emissions, and reduce the emissions already present through direct air capture. The present thesis will deeply discuss the aspects mentioned in regard to syngas and hydrogen production since they have a central role in the market of energy and chemicals. Among the strategies discussed, greater emphasis is given to the application of looping technologies and to direct air capture processes, as they have been the main point of this work. Particularly, chemical looping methane reforming to syngas was studied with Aspen Plus thermodynamic simulations, thermogravimetric analysis characterization (TGA) and testing in a fixed bed reactor. The process was studied cyclically exploiting the redox properties of a Ce-based oxide oxygen carrier synthetized with a simple forming procedure. The two steps of the looping cycles were studied isothermally at 900 °C and 950° C with a mixture of 10 %CH4 in N2 and of 3% O2 in N2, for carrier reduction and oxidation, respectively. During the stay abroad, in collaboration with the EHT of Zurich, a CO2 capture process in presence of amine solid sorbents was investigated, studying the difference in the performance achievable with the use of contactors of different geometry. The process was studied at two concentrations (382 ppm CO2 in N2 and 5.62% CO2 in N2) and at different flow rates, to understand the dynamics of the adsorption process and to define the mass transfer limiting step.