2 resultados para Career barriers
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The purpose of this research is to contribute to the literature on organizational demography and new product development by investigating how diverse individual career histories impact team performance. Moreover we highlighted the importance of considering also the institutional context and the specific labour market arrangements in which a team is embedded, in order to interpret correctly the effect of career-related diversity measures on performance. The empirical setting of the study is the videogame industry, and the teams in charge of the development of new game titles. Video games development teams are the ideal setting to investigate the influence of career histories on team performance, since the development of videogames is performed by multidisciplinary teams composed by specialists with a wide variety of technical and artistic backgrounds, who execute a significant amounts of creative thinking. We investigate our research question both with quantitative methods and with a case study on the Japanese videogame industry: one of the most innovative in this sector. Our results show how career histories in terms of occupational diversity, prior functional diversity and prior product diversity, usually have a positive influence on team performance. However, when the moderating effect of the institutional setting is taken in to account, career diversity has different or even opposite effect on team performance, according to the specific national context in which a team operates.
Resumo:
Mountainous areas are prone to natural hazards like rockfalls. Among the many countermeasures, rockfall protection barriers represent an effective solution to mitigate the risk. They are metallic structures designed to intercept rocks falling from unstable slopes, thus dissipating the energy deriving from the impact. This study aims at providing a better understanding of the response of several rockfall barrier types, through the development of rather sophisticated three-dimensional numerical finite elements models which take into account for the highly dynamic and non-linear conditions of such events. The models are built considering the actual geometrical and mechanical properties of real systems. Particular attention is given to the connecting details between the structural components and to their interactions. The importance of the work lies in being able to support a wide experimental activity with appropriate numerical modelling. The data of several full-scale tests carried out on barrier prototypes, as well as on their structural components, are combined with results of numerical simulations. Though the models are designed with relatively simple solutions in order to obtain a low computational cost of the simulations, they are able to reproduce with great accuracy the test results, thus validating the reliability of the numerical strategy proposed for the design of these structures. The developed models have shown to be readily applied to predict the barrier performance under different possible scenarios, by varying the initial configuration of the structures and/or of the impact conditions. Furthermore, the numerical models enable to optimize the design of these structures and to evaluate the benefit of possible solutions. Finally it is shown they can be also used as a valuable supporting tool for the operators within a rockfall risk assessment procedure, to gain crucial understanding of the performance of existing barriers in working conditions.