2 resultados para Calorimeters

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is about three major aspects of the identification of top quarks. First comes the understanding of their production mechanism, their decay channels and how to translate theoretical formulae into programs that can simulate such physical processes using Monte Carlo techniques. In particular, the author has been involved in the introduction of the POWHEG generator in the framework of the ATLAS experiment. POWHEG is now fully used as the benchmark program for the simulation of ttbar pairs production and decay, along with MC@NLO and AcerMC: this will be shown in chapter one. The second chapter illustrates the ATLAS detectors and its sub-units, such as calorimeters and muon chambers. It is very important to evaluate their efficiency in order to fully understand what happens during the passage of radiation through the detector and to use this knowledge in the calculation of final quantities such as the ttbar production cross section. The last part of this thesis concerns the evaluation of this quantity deploying the so-called "golden channel" of ttbar decays, yielding one energetic charged lepton, four particle jets and a relevant quantity of missing transverse energy due to the neutrino. The most important systematic errors arising from the various part of the calculation are studied in detail. Jet energy scale, trigger efficiency, Monte Carlo models, reconstruction algorithms and luminosity measurement are examples of what can contribute to the uncertainty about the cross-section.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Zero Degree Calorimeter (ZDC) of the ATLAS experiment at CERN is placed in the TAN of the LHC collider, covering the pseudorapidity region higher than 8.3. It is composed by 2 calorimeters, each one longitudinally segmented in 4 modules, located at 140 m from the IP exactly on the beam axis. The ZDC can detect neutral particles during pp collisions and it is a tool for diffractive physics. Here we present results on the forward photon energy distribution obtained using p-p collision data at sqrt{s} = 7 TeV. First the pi0 reconstruction will be used for the detector calibration with photons, then we will show results on the forward photon energy distribution in p-p collisions and the same distribution, but obtained using MC generators. Finally a comparison between data and MC will be shown.