4 resultados para Calculus of variations.
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Nuclear Magnetic Resonance (NMR) is a branch of spectroscopy that is based on the fact that many atomic nuclei may be oriented by a strong magnetic field and will absorb radiofrequency radiation at characteristic frequencies. The parameters that can be measured on the resulting spectral lines (line positions, intensities, line widths, multiplicities and transients in time-dependent experi-ments) can be interpreted in terms of molecular structure, conformation, molecular motion and other rate processes. In this way, high resolution (HR) NMR allows performing qualitative and quantitative analysis of samples in solution, in order to determine the structure of molecules in solution and not only. In the past, high-field NMR spectroscopy has mainly concerned with the elucidation of chemical structure in solution, but today is emerging as a powerful exploratory tool for probing biochemical and physical processes. It represents a versatile tool for the analysis of foods. In literature many NMR studies have been reported on different type of food such as wine, olive oil, coffee, fruit juices, milk, meat, egg, starch granules, flour, etc using different NMR techniques. Traditionally, univariate analytical methods have been used to ex-plore spectroscopic data. This method is useful to measure or to se-lect a single descriptive variable from the whole spectrum and , at the end, only this variable is analyzed. This univariate methods ap-proach, applied to HR-NMR data, lead to different problems due especially to the complexity of an NMR spectrum. In fact, the lat-ter is composed of different signals belonging to different mole-cules, but it is also true that the same molecules can be represented by different signals, generally strongly correlated. The univariate methods, in this case, takes in account only one or a few variables, causing a loss of information. Thus, when dealing with complex samples like foodstuff, univariate analysis of spectra data results not enough powerful. Spectra need to be considered in their wholeness and, for analysing them, it must be taken in consideration the whole data matrix: chemometric methods are designed to treat such multivariate data. Multivariate data analysis is used for a number of distinct, differ-ent purposes and the aims can be divided into three main groups: • data description (explorative data structure modelling of any ge-neric n-dimensional data matrix, PCA for example); • regression and prediction (PLS); • classification and prediction of class belongings for new samples (LDA and PLS-DA and ECVA). The aim of this PhD thesis was to verify the possibility of identify-ing and classifying plants or foodstuffs, in different classes, based on the concerted variation in metabolite levels, detected by NMR spectra and using the multivariate data analysis as a tool to inter-pret NMR information. It is important to underline that the results obtained are useful to point out the metabolic consequences of a specific modification on foodstuffs, avoiding the use of a targeted analysis for the different metabolites. The data analysis is performed by applying chemomet-ric multivariate techniques to the NMR dataset of spectra acquired. The research work presented in this thesis is the result of a three years PhD study. This thesis reports the main results obtained from these two main activities: A1) Evaluation of a data pre-processing system in order to mini-mize unwanted sources of variations, due to different instrumental set up, manual spectra processing and to sample preparations arte-facts; A2) Application of multivariate chemiometric models in data analy-sis.
Resumo:
The purpose of this thesis is the atomic-scale simulation of the crystal-chemical and physical (phonon, energetic) properties of some strategically important minerals for structural ceramics, biomedical and petrological applications. These properties affect the thermodynamic stability and rule the mineral-environment interface phenomena, with important economical, (bio)technological, petrological and environmental implications. The minerals of interest belong to the family of phyllosilicates (talc, pyrophyllite and muscovite) and apatite (OHAp), chosen for their importance in industrial and biomedical applications (structural ceramics) and petrophysics. In this thesis work we have applicated quantum mechanics methods, formulas and knowledge to the resolution of mineralogical problems ("Quantum Mineralogy”). The chosen theoretical approach is the Density Functional Theory (DFT), along with periodic boundary conditions to limit the portion of the mineral in analysis to the crystallographic cell and the hybrid functional B3LYP. The crystalline orbitals were simulated by linear combination of Gaussian functions (GTO). The dispersive forces, which are important for the structural determination of phyllosilicates and not properly con-sidered in pure DFT method, have been included by means of a semi-empirical correction. The phonon and the mechanical properties were also calculated. The equation of state, both in athermal conditions and in a wide temperature range, has been obtained by means of variations in the volume of the cell and quasi-harmonic approximation. Some thermo-chemical properties of the minerals (isochoric and isobaric thermal capacity) were calculated, because of their considerable applicative importance. For the first time three-dimensional charts related to these properties at different pressures and temperatures were provided. The hydroxylapatite has been studied from the standpoint of structural and phonon properties for its biotechnological role. In fact, biological apatite represents the inorganic phase of vertebrate hard tissues. Numerous carbonated (hydroxyl)apatite structures were modelled by QM to cover the broadest spectrum of possible biological structural variations to fulfil bioceramics applications.
Resumo:
Matita (that means pencil in Italian) is a new interactive theorem prover under development at the University of Bologna. When compared with state-of-the-art proof assistants, Matita presents both traditional and innovative aspects. The underlying calculus of the system, namely the Calculus of (Co)Inductive Constructions (CIC for short), is well-known and is used as the basis of another mainstream proof assistant—Coq—with which Matita is to some extent compatible. In the same spirit of several other systems, proof authoring is conducted by the user as a goal directed proof search, using a script for storing textual commands for the system. In the tradition of LCF, the proof language of Matita is procedural and relies on tactic and tacticals to proceed toward proof completion. The interaction paradigm offered to the user is based on the script management technique at the basis of the popularity of the Proof General generic interface for interactive theorem provers: while editing a script the user can move forth the execution point to deliver commands to the system, or back to retract (or “undo”) past commands. Matita has been developed from scratch in the past 8 years by several members of the Helm research group, this thesis author is one of such members. Matita is now a full-fledged proof assistant with a library of about 1.000 concepts. Several innovative solutions spun-off from this development effort. This thesis is about the design and implementation of some of those solutions, in particular those relevant for the topic of user interaction with theorem provers, and of which this thesis author was a major contributor. Joint work with other members of the research group is pointed out where needed. The main topics discussed in this thesis are briefly summarized below. Disambiguation. Most activities connected with interactive proving require the user to input mathematical formulae. Being mathematical notation ambiguous, parsing formulae typeset as mathematicians like to write down on paper is a challenging task; a challenge neglected by several theorem provers which usually prefer to fix an unambiguous input syntax. Exploiting features of the underlying calculus, Matita offers an efficient disambiguation engine which permit to type formulae in the familiar mathematical notation. Step-by-step tacticals. Tacticals are higher-order constructs used in proof scripts to combine tactics together. With tacticals scripts can be made shorter, readable, and more resilient to changes. Unfortunately they are de facto incompatible with state-of-the-art user interfaces based on script management. Such interfaces indeed do not permit to position the execution point inside complex tacticals, thus introducing a trade-off between the usefulness of structuring scripts and a tedious big step execution behavior during script replaying. In Matita we break this trade-off with tinycals: an alternative to a subset of LCF tacticals which can be evaluated in a more fine-grained manner. Extensible yet meaningful notation. Proof assistant users often face the need of creating new mathematical notation in order to ease the use of new concepts. The framework used in Matita for dealing with extensible notation both accounts for high quality bidimensional rendering of formulae (with the expressivity of MathMLPresentation) and provides meaningful notation, where presentational fragments are kept synchronized with semantic representation of terms. Using our approach interoperability with other systems can be achieved at the content level, and direct manipulation of formulae acting on their rendered forms is possible too. Publish/subscribe hints. Automation plays an important role in interactive proving as users like to delegate tedious proving sub-tasks to decision procedures or external reasoners. Exploiting the Web-friendliness of Matita we experimented with a broker and a network of web services (called tutors) which can try independently to complete open sub-goals of a proof, currently being authored in Matita. The user receives hints from the tutors on how to complete sub-goals and can interactively or automatically apply them to the current proof. Another innovative aspect of Matita, only marginally touched by this thesis, is the embedded content-based search engine Whelp which is exploited to various ends, from automatic theorem proving to avoiding duplicate work for the user. We also discuss the (potential) reusability in other systems of the widgets presented in this thesis and how we envisage the evolution of user interfaces for interactive theorem provers in the Web 2.0 era.
Resumo:
Interactive theorem provers (ITP for short) are tools whose final aim is to certify proofs written by human beings. To reach that objective they have to fill the gap between the high level language used by humans for communicating and reasoning about mathematics and the lower level language that a machine is able to “understand” and process. The user perceives this gap in terms of missing features or inefficiencies. The developer tries to accommodate the user requests without increasing the already high complexity of these applications. We believe that satisfactory solutions can only come from a strong synergy between users and developers. We devoted most part of our PHD designing and developing the Matita interactive theorem prover. The software was born in the computer science department of the University of Bologna as the result of composing together all the technologies developed by the HELM team (to which we belong) for the MoWGLI project. The MoWGLI project aimed at giving accessibility through the web to the libraries of formalised mathematics of various interactive theorem provers, taking Coq as the main test case. The motivations for giving life to a new ITP are: • study the architecture of these tools, with the aim of understanding the source of their complexity • exploit such a knowledge to experiment new solutions that, for backward compatibility reasons, would be hard (if not impossible) to test on a widely used system like Coq. Matita is based on the Curry-Howard isomorphism, adopting the Calculus of Inductive Constructions (CIC) as its logical foundation. Proof objects are thus, at some extent, compatible with the ones produced with the Coq ITP, that is itself able to import and process the ones generated using Matita. Although the systems have a lot in common, they share no code at all, and even most of the algorithmic solutions are different. The thesis is composed of two parts where we respectively describe our experience as a user and a developer of interactive provers. In particular, the first part is based on two different formalisation experiences: • our internship in the Mathematical Components team (INRIA), that is formalising the finite group theory required to attack the Feit Thompson Theorem. To tackle this result, giving an effective classification of finite groups of odd order, the team adopts the SSReflect Coq extension, developed by Georges Gonthier for the proof of the four colours theorem. • our collaboration at the D.A.M.A. Project, whose goal is the formalisation of abstract measure theory in Matita leading to a constructive proof of Lebesgue’s Dominated Convergence Theorem. The most notable issues we faced, analysed in this part of the thesis, are the following: the difficulties arising when using “black box” automation in large formalisations; the impossibility for a user (especially a newcomer) to master the context of a library of already formalised results; the uncomfortable big step execution of proof commands historically adopted in ITPs; the difficult encoding of mathematical structures with a notion of inheritance in a type theory without subtyping like CIC. In the second part of the manuscript many of these issues will be analysed with the looking glasses of an ITP developer, describing the solutions we adopted in the implementation of Matita to solve these problems: integrated searching facilities to assist the user in handling large libraries of formalised results; a small step execution semantic for proof commands; a flexible implementation of coercive subtyping allowing multiple inheritance with shared substructures; automatic tactics, integrated with the searching facilities, that generates proof commands (and not only proof objects, usually kept hidden to the user) one of which specifically designed to be user driven.