8 resultados para Calculus of tensors
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Matita (that means pencil in Italian) is a new interactive theorem prover under development at the University of Bologna. When compared with state-of-the-art proof assistants, Matita presents both traditional and innovative aspects. The underlying calculus of the system, namely the Calculus of (Co)Inductive Constructions (CIC for short), is well-known and is used as the basis of another mainstream proof assistant—Coq—with which Matita is to some extent compatible. In the same spirit of several other systems, proof authoring is conducted by the user as a goal directed proof search, using a script for storing textual commands for the system. In the tradition of LCF, the proof language of Matita is procedural and relies on tactic and tacticals to proceed toward proof completion. The interaction paradigm offered to the user is based on the script management technique at the basis of the popularity of the Proof General generic interface for interactive theorem provers: while editing a script the user can move forth the execution point to deliver commands to the system, or back to retract (or “undo”) past commands. Matita has been developed from scratch in the past 8 years by several members of the Helm research group, this thesis author is one of such members. Matita is now a full-fledged proof assistant with a library of about 1.000 concepts. Several innovative solutions spun-off from this development effort. This thesis is about the design and implementation of some of those solutions, in particular those relevant for the topic of user interaction with theorem provers, and of which this thesis author was a major contributor. Joint work with other members of the research group is pointed out where needed. The main topics discussed in this thesis are briefly summarized below. Disambiguation. Most activities connected with interactive proving require the user to input mathematical formulae. Being mathematical notation ambiguous, parsing formulae typeset as mathematicians like to write down on paper is a challenging task; a challenge neglected by several theorem provers which usually prefer to fix an unambiguous input syntax. Exploiting features of the underlying calculus, Matita offers an efficient disambiguation engine which permit to type formulae in the familiar mathematical notation. Step-by-step tacticals. Tacticals are higher-order constructs used in proof scripts to combine tactics together. With tacticals scripts can be made shorter, readable, and more resilient to changes. Unfortunately they are de facto incompatible with state-of-the-art user interfaces based on script management. Such interfaces indeed do not permit to position the execution point inside complex tacticals, thus introducing a trade-off between the usefulness of structuring scripts and a tedious big step execution behavior during script replaying. In Matita we break this trade-off with tinycals: an alternative to a subset of LCF tacticals which can be evaluated in a more fine-grained manner. Extensible yet meaningful notation. Proof assistant users often face the need of creating new mathematical notation in order to ease the use of new concepts. The framework used in Matita for dealing with extensible notation both accounts for high quality bidimensional rendering of formulae (with the expressivity of MathMLPresentation) and provides meaningful notation, where presentational fragments are kept synchronized with semantic representation of terms. Using our approach interoperability with other systems can be achieved at the content level, and direct manipulation of formulae acting on their rendered forms is possible too. Publish/subscribe hints. Automation plays an important role in interactive proving as users like to delegate tedious proving sub-tasks to decision procedures or external reasoners. Exploiting the Web-friendliness of Matita we experimented with a broker and a network of web services (called tutors) which can try independently to complete open sub-goals of a proof, currently being authored in Matita. The user receives hints from the tutors on how to complete sub-goals and can interactively or automatically apply them to the current proof. Another innovative aspect of Matita, only marginally touched by this thesis, is the embedded content-based search engine Whelp which is exploited to various ends, from automatic theorem proving to avoiding duplicate work for the user. We also discuss the (potential) reusability in other systems of the widgets presented in this thesis and how we envisage the evolution of user interfaces for interactive theorem provers in the Web 2.0 era.
Resumo:
Interactive theorem provers (ITP for short) are tools whose final aim is to certify proofs written by human beings. To reach that objective they have to fill the gap between the high level language used by humans for communicating and reasoning about mathematics and the lower level language that a machine is able to “understand” and process. The user perceives this gap in terms of missing features or inefficiencies. The developer tries to accommodate the user requests without increasing the already high complexity of these applications. We believe that satisfactory solutions can only come from a strong synergy between users and developers. We devoted most part of our PHD designing and developing the Matita interactive theorem prover. The software was born in the computer science department of the University of Bologna as the result of composing together all the technologies developed by the HELM team (to which we belong) for the MoWGLI project. The MoWGLI project aimed at giving accessibility through the web to the libraries of formalised mathematics of various interactive theorem provers, taking Coq as the main test case. The motivations for giving life to a new ITP are: • study the architecture of these tools, with the aim of understanding the source of their complexity • exploit such a knowledge to experiment new solutions that, for backward compatibility reasons, would be hard (if not impossible) to test on a widely used system like Coq. Matita is based on the Curry-Howard isomorphism, adopting the Calculus of Inductive Constructions (CIC) as its logical foundation. Proof objects are thus, at some extent, compatible with the ones produced with the Coq ITP, that is itself able to import and process the ones generated using Matita. Although the systems have a lot in common, they share no code at all, and even most of the algorithmic solutions are different. The thesis is composed of two parts where we respectively describe our experience as a user and a developer of interactive provers. In particular, the first part is based on two different formalisation experiences: • our internship in the Mathematical Components team (INRIA), that is formalising the finite group theory required to attack the Feit Thompson Theorem. To tackle this result, giving an effective classification of finite groups of odd order, the team adopts the SSReflect Coq extension, developed by Georges Gonthier for the proof of the four colours theorem. • our collaboration at the D.A.M.A. Project, whose goal is the formalisation of abstract measure theory in Matita leading to a constructive proof of Lebesgue’s Dominated Convergence Theorem. The most notable issues we faced, analysed in this part of the thesis, are the following: the difficulties arising when using “black box” automation in large formalisations; the impossibility for a user (especially a newcomer) to master the context of a library of already formalised results; the uncomfortable big step execution of proof commands historically adopted in ITPs; the difficult encoding of mathematical structures with a notion of inheritance in a type theory without subtyping like CIC. In the second part of the manuscript many of these issues will be analysed with the looking glasses of an ITP developer, describing the solutions we adopted in the implementation of Matita to solve these problems: integrated searching facilities to assist the user in handling large libraries of formalised results; a small step execution semantic for proof commands; a flexible implementation of coercive subtyping allowing multiple inheritance with shared substructures; automatic tactics, integrated with the searching facilities, that generates proof commands (and not only proof objects, usually kept hidden to the user) one of which specifically designed to be user driven.
Resumo:
The application of Concurrency Theory to Systems Biology is in its earliest stage of progress. The metaphor of cells as computing systems by Regev and Shapiro opened the employment of concurrent languages for the modelling of biological systems. Their peculiar characteristics led to the design of many bio-inspired formalisms which achieve higher faithfulness and specificity. In this thesis we present pi@, an extremely simple and conservative extension of the pi-calculus representing a keystone in this respect, thanks to its expressiveness capabilities. The pi@ calculus is obtained by the addition of polyadic synchronisation and priority to the pi-calculus, in order to achieve compartment semantics and atomicity of complex operations respectively. In its direct application to biological modelling, the stochastic variant of the calculus, Spi@, is shown able to model consistently several phenomena such as formation of molecular complexes, hierarchical subdivision of the system into compartments, inter-compartment reactions, dynamic reorganisation of compartment structure consistent with volume variation. The pivotal role of pi@ is evidenced by its capability of encoding in a compositional way several bio-inspired formalisms, so that it represents the optimal core of a framework for the analysis and implementation of bio-inspired languages. In this respect, the encodings of BioAmbients, Brane Calculi and a variant of P Systems in pi@ are formalised. The conciseness of their translation in pi@ allows their indirect comparison by means of their encodings. Furthermore it provides a ready-to-run implementation of minimal effort whose correctness is granted by the correctness of the respective encoding functions. Further important results of general validity are stated on the expressive power of priority. Several impossibility results are described, which clearly state the superior expressiveness of prioritised languages and the problems arising in the attempt of providing their parallel implementation. To this aim, a new setting in distributed computing (the last man standing problem) is singled out and exploited to prove the impossibility of providing a purely parallel implementation of priority by means of point-to-point or broadcast communication.
Resumo:
Deformability is often a crucial to the conception of many civil-engineering structural elements. Also, design is all the more burdensome if both long- and short-term deformability has to be considered. In this thesis, long- and short-term deformability has been studied from the material and the structural modelling point of view. Moreover, two materials have been handled: pultruded composites and concrete. A new finite element model for thin-walled beams has been introduced. As a main assumption, cross-sections rigid are considered rigid in their plane; this hypothesis replaces that of the classical beam theory of plane cross-sections in the deformed state. That also allows reducing the total number of degrees of freedom, and therefore making analysis faster compared with twodimensional finite elements. Longitudinal direction warping is left free, allowing describing phenomena such as the shear lag. The new finite-element model has been first applied to concrete thin-walled beams (such as roof high span girders or bridge girders) subject to instantaneous service loadings. Concrete in his cracked state has been considered through a smeared crack model for beams under bending. At a second stage, the FE-model has been extended to the viscoelastic field and applied to pultruded composite beams under sustained loadings. The generalized Maxwell model has been adopted. As far as materials are concerned, long-term creep tests have been carried out on pultruded specimens. Both tension and shear tests have been executed. Some specimen has been strengthened with carbon fibre plies to reduce short- and long- term deformability. Tests have been done in a climate room and specimens kept 2 years under constant load in time. As for concrete, a model for tertiary creep has been proposed. The basic idea is to couple the UMLV linear creep model with a damage model in order to describe nonlinearity. An effective strain tensor, weighting the total and the elasto-damaged strain tensors, controls damage evolution through the damage loading function. Creep strains are related to the effective stresses (defined by damage models) and so associated to the intact material.
Resumo:
My aim is to develop a theory of cooperation within the organization and empirically test it. Drawing upon social exchange theory, social identity theory, the idea of collective intentions, and social constructivism, the main assumption of my work implies that both cooperation and the organization itself are continually shaped and restructured by actions, judgments, and symbolic interpretations of the parties involved. Therefore, I propose that the decision to cooperate, expressed say as an intention to cooperate, reflects and depends on a three step social process shaped by the interpretations of the actors involved. The first step entails an instrumental evaluation of cooperation in terms of social exchange. In the second step, this “social calculus” is translated into cognitive, emotional and evaluative reactions directed toward the organization. Finally, once the identification process is completed and membership awareness is established, I propose that individuals will start to think largely in terms of “We” instead of “I”. Self-goals are redefined at the collective level, and the outcomes for self, others, and the organization become practically interchangeable. I decided to apply my theory to an important cooperative problem in management research: knowledge exchange within organizations. Hence, I conducted a quantitative survey among the members of the virtual community, “www.borse.it” (n=108). Within this community, members freely decide to exchange their knowledge about the stock market among themselves. Because of the confirmatory requirements and the structural complexity of the theory proposed (i.e., the proposal that instrumental evaluations will induce social identity and this in turn will causes collective intentions), I use Structural Equation Modeling to test all hypotheses in this dissertation. The empirical survey-based study found support for the theory of cooperation proposed in this dissertation. The findings suggest that an appropriate conceptualization of the decision to exchange knowledge is one where collective intentions depend proximally on social identity (i.e., cognitive identification, affective commitment, and evaluative engagement) with the organization, and this identity depends on instrumental evaluations of cooperators (i.e., perceived value of the knowledge received, assessment of past reciprocity, expected reciprocity, and expected social outcomes of the exchange). Furthermore, I find that social identity fully mediates the effects of instrumental motives on collective intentions.
Resumo:
The aim of this thesis is to go through different approaches for proving expressiveness properties in several concurrent languages. We analyse four different calculi exploiting for each one a different technique.
We begin with the analysis of a synchronous language, we explore the expressiveness of a fragment of CCS! (a variant of Milner's CCS where replication is considered instead of recursion) w.r.t. the existence of faithful encodings (i.e. encodings that respect the behaviour of the encoded model without introducing unnecessary computations) of models of computability strictly less expressive than Turing Machines. Namely, grammars of types 1,2 and 3 in the Chomsky Hierarchy.
We then move to asynchronous languages and we study full abstraction for two Linda-like languages. Linda can be considered as the asynchronous version of CCS plus a shared memory (a multiset of elements) that is used for storing messages. After having defined a denotational semantics based on traces, we obtain fully abstract semantics for both languages by using suitable abstractions in order to identify different traces which do not correspond to different behaviours.
Since the ability of one of the two variants considered of recognising multiple occurrences of messages in the store (which accounts for an increase of expressiveness) reflects in a less complex abstraction, we then study other languages where multiplicity plays a fundamental role. We consider the language CHR (Constraint Handling Rules) a language which uses multi-headed (guarded) rules. We prove that multiple heads augment the expressive power of the language. Indeed we show that if we restrict to rules where the head contains at most n atoms we could generate a hierarchy of languages with increasing expressiveness (i.e. the CHR language allowing at most n atoms in the heads is more expressive than the language allowing at most m atoms, with m
Resumo:
By using a symbolic method, known in the literature as the classical umbral calculus, a symbolic representation of Lévy processes is given and a new family of time-space harmonic polynomials with respect to such processes, which includes and generalizes the exponential complete Bell polynomials, is introduced. The usefulness of time-space harmonic polynomials with respect to Lévy processes is that it is a martingale the stochastic process obtained by replacing the indeterminate x of the polynomials with a Lévy process, whereas the Lévy process does not necessarily have this property. Therefore to find such polynomials could be particularly meaningful for applications. This new family includes Hermite polynomials, time-space harmonic with respect to Brownian motion, Poisson-Charlier polynomials with respect to Poisson processes, Laguerre and actuarial polynomials with respect to Gamma processes , Meixner polynomials of the first kind with respect to Pascal processes, Euler, Bernoulli, Krawtchuk, and pseudo-Narumi polynomials with respect to suitable random walks. The role played by cumulants is stressed and brought to the light, either in the symbolic representation of Lévy processes and their infinite divisibility property, either in the generalization, via umbral Kailath-Segall formula, of the well-known formulae giving elementary symmetric polynomials in terms of power sum symmetric polynomials. The expression of the family of time-space harmonic polynomials here introduced has some connections with the so-called moment representation of various families of multivariate polynomials. Such moment representation has been studied here for the first time in connection with the time-space harmonic property with respect to suitable symbolic multivariate Lévy processes. In particular, multivariate Hermite polynomials and their properties have been studied in connection with a symbolic version of the multivariate Brownian motion, while multivariate Bernoulli and Euler polynomials are represented as powers of multivariate polynomials which are time-space harmonic with respect to suitable multivariate Lévy processes.
Resumo:
We introduce labelled sequent calculi for indexed modal logics. We prove that the structural rules of weakening and contraction are height-preserving admissible, that all rules are invertible, and that cut is admissible. Then we prove that each calculus introduced is sound and complete with respect to the appropriate class of transition frames.