14 resultados para CSG, Solid Modeling, Exact Computation, Intersection Curves, Algebraic Surfaces
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The modern stratigraphy of clastic continental margins is the result of the interaction between several geological processes acting on different time scales, among which sea level oscillations, sediment supply fluctuations and local tectonics are the main mechanisms. During the past three years my PhD was focused on understanding the impact of each of these process in the deposition of the central and northern Adriatic sedimentary successions, with the aim of reconstructing and quantifying the Late Quaternary eustatic fluctuations. In the last few decades, several Authors tried to quantify past eustatic fluctuations through the analysis of direct sea level indicators, among which drowned barrier-island deposits or coral reefs, or indirect methods, such as Oxygen isotope ratios (δ18O) or modeling simulations. Sea level curves, obtained from direct sea level indicators, record a composite signal, formed by the contribution of the global eustatic change and regional factors, as tectonic processes or glacial-isostatic rebound effects: the eustatic signal has to be obtained by removing the contribution of these other mechanisms. To obtain the most realistic sea level reconstructions it is important to quantify the tectonic regime of the central Adriatic margin. This result has been achieved integrating a numerical approach with the analysis of high-resolution seismic profiles. In detail, the subsidence trend obtained from the geohistory analysis and the backstripping of the borehole PRAD1.2 (the borehole PRAD1.2 is a 71 m continuous borehole drilled in -185 m of water depth, south of the Mid Adriatic Deep - MAD - during the European Project PROMESS 1, Profile Across Mediterranean Sedimentary Systems, Part 1), has been confirmed by the analysis of lowstand paleoshorelines and by benthic foraminifera associations investigated through the borehole. This work showed an evolution from inner-shelf environment, during Marine Isotopic Stage (MIS) 10, to upper-slope conditions, during MIS 2. Once the tectonic regime of the central Adriatic margin has been constrained, it is possible to investigate the impact of sea level and sediment supply fluctuations on the deposition of the Late Pleistocene-Holocene transgressive deposits. The Adriatic transgressive record (TST - Transgressive Systems Tract) is formed by three correlative sedimentary bodies, deposited in less then 14 kyr since the Last Glacial Maximum (LGM); in particular: along the central Adriatic shelf and in the adjacent slope basin the TST is formed by marine units, while along the northern Adriatic shelf the TST is represented by costal deposits in a backstepping configuration. The central Adriatic margin, characterized by a thick transgressive sedimentary succession, is the ideal site to investigate the impact of late Pleistocene climatic and eustatic fluctuations, among which Meltwater Pulses 1A and 1B and the Younger Dryas cold event. The central Adriatic TST is formed by a tripartite deposit bounded by two regional unconformities. In particular, the middle TST unit includes two prograding wedges, deposited in the interval between the two Meltwater Pulse events, as highlighted by several 14C age estimates, and likely recorded the Younger Dryas cold interval. Modeling simulations, obtained with the two coupled models HydroTrend 3.0 and 2D-Sedflux 1.0C (developed by the Community Surface Dynamics Modeling System - CSDMS), integrated by the analysis of high resolution seismic profiles and core samples, indicate that: 1 - the prograding middle TST unit, deposited during the Younger Dryas, was formed as a consequence of an increase in sediment flux, likely connected to a decline in vegetation cover in the catchment area due to the establishment of sub glacial arid conditions; 2 - the two-stage prograding geometry was the consequence of a sea level still-stand (or possibly a fall) during the Younger Dryas event. The northern Adriatic margin, characterized by a broad and gentle shelf (350 km wide with a low angle plunge of 0.02° to the SE), is the ideal site to quantify the timing of each steps of the post LGM sea level rise. The modern shelf is characterized by sandy deposits of barrier-island systems in a backstepping configuration, showing younger ages at progressively shallower depths, which recorded the step-wise nature of the last sea level rise. The age-depth model, obtained by dated samples of basal peat layers, is in good agreement with previous published sea level curves, and highlights the post-glacial eustatic trend. The interval corresponding to the Younger Dyas cold reversal, instead, is more complex: two coeval coastal deposits characterize the northern Adriatic shelf at very different water depths. Several explanations and different models can be attempted to explain this conundrum, but the problem remains still unsolved.
Resumo:
The design process of any electric vehicle system has to be oriented towards the best energy efficiency, together with the constraint of maintaining comfort in the vehicle cabin. Main aim of this study is to research the best thermal management solution in terms of HVAC efficiency without compromising occupant’s comfort and internal air quality. An Arduino controlled Low Cost System of Sensors was developed and compared against reference instrumentation (average R-squared of 0.92) and then used to characterise the vehicle cabin in real parking and driving conditions trials. Data on the energy use of the HVAC was retrieved from the car On-Board Diagnostic port. Energy savings using recirculation can reach 30 %, but pollutants concentration in the cabin builds up in this operating mode. Moreover, the temperature profile appeared strongly nonuniform with air temperature differences up to 10° C. Optimisation methods often require a high number of runs to find the optimal configuration of the system. Fast models proved to be beneficial for these task, while CFD-1D model are usually slower despite the higher level of detail provided. In this work, the collected dataset was used to train a fast ML model of both cabin and HVAC using linear regression. Average scaled RMSE over all trials is 0.4 %, while computation time is 0.0077 ms for each second of simulated time on a laptop computer. Finally, a reinforcement learning environment was built in OpenAI and Stable-Baselines3 using the built-in Proximal Policy Optimisation algorithm to update the policy and seek for the best compromise between comfort, air quality and energy reward terms. The learning curves show an oscillating behaviour overall, with only 2 experiments behaving as expected even if too slow. This result leaves large room for improvement, ranging from the reward function engineering to the expansion of the ML model.
Resumo:
Process algebraic architectural description languages provide a formal means for modeling software systems and assessing their properties. In order to bridge the gap between system modeling and system im- plementation, in this thesis an approach is proposed for automatically generating multithreaded object-oriented code from process algebraic architectural descriptions, in a way that preserves – under certain assumptions – the properties proved at the architectural level. The approach is divided into three phases, which are illustrated by means of a running example based on an audio processing system. First, we develop an architecture-driven technique for thread coordination management, which is completely automated through a suitable package. Second, we address the translation of the algebraically-specified behavior of the individual software units into thread templates, which will have to be filled in by the software developer according to certain guidelines. Third, we discuss performance issues related to the suitability of synthesizing monitors rather than threads from software unit descriptions that satisfy specific constraints. In addition to the running example, we present two case studies about a video animation repainting system and the implementation of a leader election algorithm, in order to summarize the whole approach. The outcome of this thesis is the implementation of the proposed approach in a translator called PADL2Java and its integration in the architecture-centric verification tool TwoTowers.
Resumo:
The wheel - rail contact analysis plays a fundamental role in the multibody modeling of railway vehicles. A good contact model must provide an accurate description of the global contact phenomena (contact forces and torques, number and position of the contact points) and of the local contact phenomena (position and shape of the contact patch, stresses and displacements). The model has also to assure high numerical efficiency (in order to be implemented directly online within multibody models) and a good compatibility with commercial multibody software (Simpack Rail, Adams Rail). The wheel - rail contact problem has been discussed by several authors and many models can be found in the literature. The contact models can be subdivided into two different categories: the global models and the local (or differential) models. Currently, as regards the global models, the main approaches to the problem are the so - called rigid contact formulation and the semi – elastic contact description. The rigid approach considers the wheel and the rail as rigid bodies. The contact is imposed by means of constraint equations and the contact points are detected during the dynamic simulation by solving the nonlinear algebraic differential equations associated to the constrained multibody system. Indentation between the bodies is not permitted and the normal contact forces are calculated through the Lagrange multipliers. Finally the Hertz’s and the Kalker’s theories allow to evaluate the shape of the contact patch and the tangential forces respectively. Also the semi - elastic approach considers the wheel and the rail as rigid bodies. However in this case no kinematic constraints are imposed and the indentation between the bodies is permitted. The contact points are detected by means of approximated procedures (based on look - up tables and simplifying hypotheses on the problem geometry). The normal contact forces are calculated as a function of the indentation while, as in the rigid approach, the Hertz’s and the Kalker’s theories allow to evaluate the shape of the contact patch and the tangential forces. Both the described multibody approaches are computationally very efficient but their generality and accuracy turn out to be often insufficient because the physical hypotheses behind these theories are too restrictive and, in many circumstances, unverified. In order to obtain a complete description of the contact phenomena, local (or differential) contact models are needed. In other words wheel and rail have to be considered elastic bodies governed by the Navier’s equations and the contact has to be described by suitable analytical contact conditions. The contact between elastic bodies has been widely studied in literature both in the general case and in the rolling case. Many procedures based on variational inequalities, FEM techniques and convex optimization have been developed. This kind of approach assures high generality and accuracy but still needs very large computational costs and memory consumption. Due to the high computational load and memory consumption, referring to the current state of the art, the integration between multibody and differential modeling is almost absent in literature especially in the railway field. However this integration is very important because only the differential modeling allows an accurate analysis of the contact problem (in terms of contact forces and torques, position and shape of the contact patch, stresses and displacements) while the multibody modeling is the standard in the study of the railway dynamics. In this thesis some innovative wheel – rail contact models developed during the Ph. D. activity will be described. Concerning the global models, two new models belonging to the semi – elastic approach will be presented; the models satisfy the following specifics: 1) the models have to be 3D and to consider all the six relative degrees of freedom between wheel and rail 2) the models have to consider generic railway tracks and generic wheel and rail profiles 3) the models have to assure a general and accurate handling of the multiple contact without simplifying hypotheses on the problem geometry; in particular the models have to evaluate the number and the position of the contact points and, for each point, the contact forces and torques 4) the models have to be implementable directly online within the multibody models without look - up tables 5) the models have to assure computation times comparable with those of commercial multibody software (Simpack Rail, Adams Rail) and compatible with RT and HIL applications 6) the models have to be compatible with commercial multibody software (Simpack Rail, Adams Rail). The most innovative aspect of the new global contact models regards the detection of the contact points. In particular both the models aim to reduce the algebraic problem dimension by means of suitable analytical techniques. This kind of reduction allows to obtain an high numerical efficiency that makes possible the online implementation of the new procedure and the achievement of performance comparable with those of commercial multibody software. At the same time the analytical approach assures high accuracy and generality. Concerning the local (or differential) contact models, one new model satisfying the following specifics will be presented: 1) the model has to be 3D and to consider all the six relative degrees of freedom between wheel and rail 2) the model has to consider generic railway tracks and generic wheel and rail profiles 3) the model has to assure a general and accurate handling of the multiple contact without simplifying hypotheses on the problem geometry; in particular the model has to able to calculate both the global contact variables (contact forces and torques) and the local contact variables (position and shape of the contact patch, stresses and displacements) 4) the model has to be implementable directly online within the multibody models 5) the model has to assure high numerical efficiency and a reduced memory consumption in order to achieve a good integration between multibody and differential modeling (the base for the local contact models) 6) the model has to be compatible with commercial multibody software (Simpack Rail, Adams Rail). In this case the most innovative aspects of the new local contact model regard the contact modeling (by means of suitable analytical conditions) and the implementation of the numerical algorithms needed to solve the discrete problem arising from the discretization of the original continuum problem. Moreover, during the development of the local model, the achievement of a good compromise between accuracy and efficiency turned out to be very important to obtain a good integration between multibody and differential modeling. At this point the contact models has been inserted within a 3D multibody model of a railway vehicle to obtain a complete model of the wagon. The railway vehicle chosen as benchmark is the Manchester Wagon the physical and geometrical characteristics of which are easily available in the literature. The model of the whole railway vehicle (multibody model and contact model) has been implemented in the Matlab/Simulink environment. The multibody model has been implemented in SimMechanics, a Matlab toolbox specifically designed for multibody dynamics, while, as regards the contact models, the CS – functions have been used; this particular Matlab architecture allows to efficiently connect the Matlab/Simulink and the C/C++ environment. The 3D multibody model of the same vehicle (this time equipped with a standard contact model based on the semi - elastic approach) has been then implemented also in Simpack Rail, a commercial multibody software for railway vehicles widely tested and validated. Finally numerical simulations of the vehicle dynamics have been carried out on many different railway tracks with the aim of evaluating the performances of the whole model. The comparison between the results obtained by the Matlab/ Simulink model and those obtained by the Simpack Rail model has allowed an accurate and reliable validation of the new contact models. In conclusion to this brief introduction to my Ph. D. thesis, we would like to thank Trenitalia and the Regione Toscana for the support provided during all the Ph. D. activity. Moreover we would also like to thank the INTEC GmbH, the society the develops the software Simpack Rail, with which we are currently working together to develop innovative toolboxes specifically designed for the wheel rail contact analysis.
Resumo:
This thesis tackles the problem of the automated detection of the atmospheric boundary layer (BL) height, h, from aerosol lidar/ceilometer observations. A new method, the Bayesian Selective Method (BSM), is presented. It implements a Bayesian statistical inference procedure which combines in an statistically optimal way different sources of information. Firstly atmospheric stratification boundaries are located from discontinuities in the ceilometer back-scattered signal. The BSM then identifies the discontinuity edge that has the highest probability to effectively mark the BL height. Information from the contemporaneus physical boundary layer model simulations and a climatological dataset of BL height evolution are combined in the assimilation framework to assist this choice. The BSM algorithm has been tested for four months of continuous ceilometer measurements collected during the BASE:ALFA project and is shown to realistically diagnose the BL depth evolution in many different weather conditions. Then the BASE:ALFA dataset is used to investigate the boundary layer structure in stable conditions. Functions from the Obukhov similarity theory are used as regression curves to fit observed velocity and temperature profiles in the lower half of the stable boundary layer. Surface fluxes of heat and momentum are best-fitting parameters in this exercise and are compared with what measured by a sonic anemometer. The comparison shows remarkable discrepancies, more evident in cases for which the bulk Richardson number turns out to be quite large. This analysis supports earlier results, that surface turbulent fluxes are not the appropriate scaling parameters for profiles of mean quantities in very stable conditions. One of the practical consequences is that boundary layer height diagnostic formulations which mainly rely on surface fluxes are in disagreement to what obtained by inspecting co-located radiosounding profiles.
Resumo:
The kinematics is a fundamental tool to infer the dynamical structure of galaxies and to understand their formation and evolution. Spectroscopic observations of gas emission lines are often used to derive rotation curves and velocity dispersions. It is however difficult to disentangle these two quantities in low spatial-resolution data because of beam smearing. In this thesis, we present 3D-Barolo, a new software to derive the gas kinematics of disk galaxies from emission-line data-cubes. The code builds tilted-ring models in the 3D observational space and compares them with the actual data-cubes. 3D-Barolo works with data at a wide range of spatial resolutions without being affected by instrumental biases. We use 3D-Barolo to derive rotation curves and velocity dispersions of several galaxies in both the local and the high-redshift Universe. We run our code on HI observations of nearby galaxies and we compare our results with 2D traditional approaches. We show that a 3D approach to the derivation of the gas kinematics has to be preferred to a 2D approach whenever a galaxy is resolved with less than about 20 elements across the disk. We moreover analyze a sample of galaxies at z~1, observed in the H-alpha line with the KMOS/VLT spectrograph. Our 3D modeling reveals that the kinematics of these high-z systems is comparable to that of local disk galaxies, with steeply-rising rotation curves followed by a flat part and H-alpha velocity dispersions of 15-40 km/s over the whole disks. This evidence suggests that disk galaxies were already fully settled about 7-8 billion years ago. In summary, 3D-Barolo is a powerful and robust tool to separate physical and instrumental effects and to derive a reliable kinematics. The analysis of large samples of galaxies at different redshifts with 3D-Barolo will provide new insights on how galaxies assemble and evolve throughout cosmic time.
Resumo:
The two-metal-ion architecture is a structural feature found in a variety of RNA processing metalloenzymes or ribozymes (RNA-based enzymes), which control the biogenesis and the metabolism of vital RNAs, including non-coding RNAs (ncRNAs). Notably, such ncRNAs are emerging as key players for the regulation of cellular homeostasis, and their altered expression has been often linked to the development of severe human pathologies, from cancer to mental disorders. Accordingly, understanding the biological processing of ncRNAs is foundational for the development of novel therapeutic strategies and tools. Here, we use state-of the-art molecular simulations, complemented with X-ray crystallography and biochemical experiments, to characterize the RNA processing cycle as catalyzed by two two-metal-ion enzymes: the group II intron ribozymes and the RNase H1. We show that multiple and diverse cations are strategically recruited at and timely released from the enzymes’ active site during catalysis. Such a controlled cations’ trafficking leads to the recursive formation and disruption of an extended two-metal ion architecture that is functional for RNA-hydrolysis – from substrate recruitment to product release. Importantly, we found that these cations’ binding sites are conserved among other RNA-processing machineries, including the human spliceosome and CRISPR-Cas systems, suggesting that an evolutionarily-converged catalytic strategy is adopted by these enzymes to process RNA molecules. Thus, our findings corroborate and sensibly extend the current knowledge of two-metal-ion enzymes, and support the design of novel drugs targeting RNA-processing metalloenzymes or ribozymes as well as the rational engineering of novel programmable gene-therapy tools.
Resumo:
The fast development of Information Communication Technologies (ICT) offers new opportunities to realize future smart cities. To understand, manage and forecast the city's behavior, it is necessary the analysis of different kinds of data from the most varied dataset acquisition systems. The aim of this research activity in the framework of Data Science and Complex Systems Physics is to provide stakeholders with new knowledge tools to improve the sustainability of mobility demand in future cities. Under this perspective, the governance of mobility demand generated by large tourist flows is becoming a vital issue for the quality of life in Italian cities' historical centers, which will worsen in the next future due to the continuous globalization process. Another critical theme is sustainable mobility, which aims to reduce private transportation means in the cities and improve multimodal mobility. We analyze the statistical properties of urban mobility of Venice, Rimini, and Bologna by using different datasets provided by companies and local authorities. We develop algorithms and tools for cartography extraction, trips reconstruction, multimodality classification, and mobility simulation. We show the existence of characteristic mobility paths and statistical properties depending on transport means and user's kinds. Finally, we use our results to model and simulate the overall behavior of the cars moving in the Emilia Romagna Region and the pedestrians moving in Venice with software able to replicate in silico the demand for mobility and its dynamic.
Resumo:
Air pollution is one of the greatest health risks in the world. At the same time, the strong correlation with climate change, as well as with Urban Heat Island and Heat Waves, make more intense the effects of all these phenomena. A good air quality and high levels of thermal comfort are the big goals to be reached in urban areas in coming years. Air quality forecast help decision makers to improve air quality and public health strategies, mitigating the occurrence of acute air pollution episodes. Air quality forecasting approaches combine an ensemble of models to provide forecasts from global to regional air pollution and downscaling for selected countries and regions. The development of models dedicated to urban air quality issues requires a good set of data regarding the urban morphology and building material characteristics. Only few examples of air quality forecast system at urban scale exist in the literature and often they are limited to selected cities. This thesis develops by setting up a methodology for the development of a forecasting tool. The forecasting tool can be adapted to all cities and uses a new parametrization for vegetated areas. The parametrization method, based on aerodynamic parameters, produce the urban spatially varying roughness. At the core of the forecasting tool there is a dispersion model (urban scale) used in forecasting mode, and the meteorological and background concentration forecasts provided by two regional numerical weather forecasting models. The tool produces the 1-day spatial forecast of NO2, PM10, O3 concentration, the air temperature, the air humidity and BLQ-Air index values. The tool is automatized to run every day, the maps produced are displayed on the e-Globus platform, updated every day. The results obtained indicate that the forecasting output were in good agreement with the observed measurements.
Resumo:
The main purpose of this work is to develop a numerical platform for the turbulence modeling and optimal control of liquid metal flows. Thanks to their interesting thermal properties, liquid metals are widely studied as coolants for heat transfer applications in the nuclear context. However, due to their low Prandtl numbers, the standard turbulence models commonly used for coolants as air or water are inadequate. Advanced turbulence models able to capture the anisotropy in the flow and heat transfer are then necessary. In this thesis, a new anisotropic four-parameter turbulence model is presented and validated. The proposed model is based on explicit algebraic models and solves four additional transport equations for dynamical and thermal turbulent variables. For the validation of the model, several flow configurations are considered for different Reynolds and Prandtl numbers, namely fully developed flows in a plane channel and cylindrical pipe, and forced and mixed convection in a backward-facing step geometry. Since buoyancy effects cannot be neglected in liquid metals-cooled fast reactors, the second aim of this work is to provide mathematical and numerical tools for the simulation and optimization of liquid metals in mixed and natural convection. Optimal control problems for turbulent buoyant flows are studied and analyzed with the Lagrange multipliers method. Numerical algorithms for optimal control problems are integrated into the numerical platform and several simulations are performed to show the robustness, consistency, and feasibility of the method.
Resumo:
This dissertation aims at developing advanced analytical tools able to model surface waves propagating in elastic metasurfaces. In particular, four different objectives are defined and pursued throughout this work to enrich the description of the metasurface dynamics. First, a theoretical framework is developed to describe the dispersion properties of a seismic metasurface composed of discrete resonators placed on a porous medium considering part of it fully saturated. Such a model combines classical elasticity theory, Biot’s poroelasticity and an effective medium approach to describe the metasurface dynamics and its coupling with the poroelastic substrate. Second, an exact formulation based on the multiple scattering theory is developed to extend the two-dimensional classical Lamb’s problem to the case of an elastic half-space coupled to an arbitrary number of discrete surface resonators. To this purpose, the incident wavefield generated by a harmonic source and the scattered field generated by each resonator are calculated. The substrate wavefield is then obtained as solutions of the coupled problem due to the interference of the incident field and the multiple scattered fields of the oscillators. Third, the above discussed formulation is extended to three-dimensional contexts. The purpose here is to investigate the dynamic behavior and the topological properties of quasiperiodic elastic metasurfaces. Finally, the multiple scattering formulation is extended to model flexural metasurfaces, i.e., an array of thin plates. To this end, the resonant plates are modeled by means of their equivalent impedance, derived by exploiting the Kirchhoff plate theory. The proposed formulation permits the treatment of a general flexural metasurface, with no limitation on the number of plates and the configuration taken into account. Overall, the proposed analytical tools could pave the way for a better understanding of metasurface dynamics and their implementation in engineered devices.
Resumo:
Clear cell sarcoma of the kidney (CCSK) is the second most common pediatric renal tumor, characterized in 90% of cases by the presence of internal tandem duplications (ITDs) localized at the last exon of BCOR gene. BCOR protein constitute a core component of the non-canonical Polycomb Repressive Complex1 (PRC1.1), which performs a fundamental silencing activity. ITDs in the last BCOR exon at the level of PUFD domain have been identified in many tumor subtypes and could affect PCGF1 binding and the subsequent PRC1.1 activity, although the exact oncogenic mechanism of ITD remains poorly understood. This project has the objective of investigating the molecular mechanisms underlying the oncogenesis of CCSK, approaching the study with different methodologies. A first model in HEK-293 allowed to obtain important informations about BCOR functionality, suggesting that the presence of ITD generates an altered activity which is very different from a loss-of-function. It has also been observed that BCOR function within the PRC1.1 complex varies with different ITDs. Moreover, it allowed the identification of molecular signatures evoked by the presence of BCOR-ITD, including its role in extracellular matrix interactions and invasiveness promotion. The parallel analysis of WTS data from 8 CCSK cases permitted the identification of a peculiar signature for metastatic CCSKs, highlighting a 20-fold overexpression of FGF3. This factor promoted a significant increase in invasive ability in the cellular model. In order to study BCOR-ITD effects over cell stemness and differentiation, an inducible model is being obtained in H1 cells. This way, it will be possible to study the functionality of BCOR-ITD in a context more similar to the origin of CCSKs, evaluating both the specific interactome and phenotypic consequences caused by the mutation.
Resumo:
Rhodamine B (RB) has been successfully exploited in the synthesis of light harvesting systems, but since RB is prone to form dimers acting as quenchers for the fluorescence, high energy transfer efficiencies can be reached only when using bulky and hydrophobic counterions acting as spacers between RBs. In this PhD thesis, a multiscale theoretical study aimed at providing insights into the structural, photophysical and optical properties of RB and its aggregates is presented. At the macroscopic level (no atomistic details) a phenomenological model describing the fluorescence decay of RB networks in presence of both quenching from dimers and exciton-exciton annihiliation is presented and analysed, showing that the quenching from dimers affects the decay only at long times, a feature that can be exploited in global fitting analysis to determine relevant chemical and photophysical information. At the mesoscopic level (atomistic details but no electronic structure) the RB aggregation in water in presence of different counterions is studied with molecular dynamics (MD) simulations. A new force field has been parametrized for describing the RB flexibility and the RB-RB interaction driving the dimerization. Simulations correctly predict the RB/counterion aggregation only in presence of bulky and hydrophobic counterion and its ability to prevent the dimerization. Finally, at the microscopic level, DFT calculations are performed to demonstrate the spacing action of bulky counterions, but standard TDDFT calculations are showed to fail in correctly describing the excited states of RB and its dimers. Moreover, also standard procedures proposed in literature for obtaining ad hoc functionals are showed to not work properly. A detailed analysis on the effect of the exact exchange shows that its short-range contribution is the crucial quantity for ameliorating results, and a new functional containing a proper amount of such an exchange is proposed and successfully tested.
Resumo:
In recent decades, two prominent trends have influenced the data modeling field, namely network analysis and machine learning. This thesis explores the practical applications of these techniques within the domain of drug research, unveiling their multifaceted potential for advancing our comprehension of complex biological systems. The research undertaken during this PhD program is situated at the intersection of network theory, computational methods, and drug research. Across six projects presented herein, there is a gradual increase in model complexity. These projects traverse a diverse range of topics, with a specific emphasis on drug repurposing and safety in the context of neurological diseases. The aim of these projects is to leverage existing biomedical knowledge to develop innovative approaches that bolster drug research. The investigations have produced practical solutions, not only providing insights into the intricacies of biological systems, but also allowing the creation of valuable tools for their analysis. In short, the achievements are: • A novel computational algorithm to identify adverse events specific to fixed-dose drug combinations. • A web application that tracks the clinical drug research response to SARS-CoV-2. • A Python package for differential gene expression analysis and the identification of key regulatory "switch genes". • The identification of pivotal events causing drug-induced impulse control disorders linked to specific medications. • An automated pipeline for discovering potential drug repurposing opportunities. • The creation of a comprehensive knowledge graph and development of a graph machine learning model for predictions. Collectively, these projects illustrate diverse applications of data science and network-based methodologies, highlighting the profound impact they can have in supporting drug research activities.