2 resultados para CRITICAL TEMPERATURE

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Theoretical models are developed for the continuous-wave and pulsed laser incision and cut of thin single and multi-layer films. A one-dimensional steady-state model establishes the theoretical foundations of the problem by combining a power-balance integral with heat flow in the direction of laser motion. In this approach, classical modelling methods for laser processing are extended by introducing multi-layer optical absorption and thermal properties. The calculation domain is consequently divided in correspondence with the progressive removal of individual layers. A second, time-domain numerical model for the short-pulse laser ablation of metals accounts for changes in optical and thermal properties during a single laser pulse. With sufficient fluence, the target surface is heated towards its critical temperature and homogeneous boiling or "phase explosion" takes place. Improvements are seen over previous works with the more accurate calculation of optical absorption and shielding of the incident beam by the ablation products. A third, general time-domain numerical laser processing model combines ablation depth and energy absorption data from the short-pulse model with two-dimensional heat flow in an arbitrary multi-layer structure. Layer removal is the result of both progressive short-pulse ablation and classical vaporisation due to long-term heating of the sample. At low velocity, pulsed laser exposure of multi-layer films comprising aluminium-plastic and aluminium-paper are found to be characterised by short-pulse ablation of the metallic layer and vaporisation or degradation of the others due to thermal conduction from the former. At high velocity, all layers of the two films are ultimately removed by vaporisation or degradation as the average beam power is increased to achieve a complete cut. The transition velocity between the two characteristic removal types is shown to be a function of the pulse repetition rate. An experimental investigation validates the simulation results and provides new laser processing data for some typical packaging materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypocretin 1 and 2 (HCRT, also called Orexin A and B) are neuropeptides released by neurons in the lateral hypothalamus. HCRT neurons widely project to the entire neuroaxis. HCRT neurons have been reported to participate in various hypothalamic physiological processes including cardiovascular functions, wake-sleep cycle, and they may also influence metabolic rate and the regulation of body temperature. HCRT neurons are lost in narcolepsy, a rare neurological disorder, characterized by excessive daytime sleepiness, cataplexy, sleep fragmentation and occurrence of sleep-onset rapid-eye-movement episodes. We investigated whether HCRT neurons mediate the sleep-dependent cardiovascular adaptations to changes in ambient temperature (Ta). HCRT-ataxin3 transgenic mice with genetic ablation of HCRT neurons (n = 11) and wild-type controls (n = 12) were instrumented with electrodes for sleep scoring and a telemetric blood pressure (BP) transducer (DSI, Inc.). Simultaneous sleep and BP recordings were performed on mice undisturbed and freely-behaving at 20 °C, 25 °C, and 30 °C for 48 hours at each Ta. Analysis of variance of BP indicated a significance of the main effects of wake-sleep state and Ta, their interaction effect, and the wake-sleep state x mouse strain interaction effect. BP increased with decreasing Ta. This effect of Ta on BP was significantly lower in rapid-eye-movement sleep (REMS) than either in non-rapid-eye-movement sleep (NREMS) or wakefulness regardless of the mouse strain. BP was higher in wakefulness than either in NREMS or REMS. This effect of sleep on BP was significantly reduced in mice lacking HCRT neurons at each Ta, particularly during REMS. These data suggest that HCRT neurons play a critical role in mediating the effects of sleep but not those of Ta on BP in mice. HCRT neurons may thus be part of the central neural pathways which mediate the phenomenon of blood pressure dipping on passing from wakefulness to sleep.