2 resultados para CONVEX-SETS

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As distributed collaborative applications and architectures are adopting policy based management for tasks such as access control, network security and data privacy, the management and consolidation of a large number of policies is becoming a crucial component of such policy based systems. In large-scale distributed collaborative applications like web services, there is the need of analyzing policy interactions and integrating policies. In this thesis, we propose and implement EXAM-S, a comprehensive environment for policy analysis and management, which can be used to perform a variety of functions such as policy property analyses, policy similarity analysis, policy integration etc. As part of this environment, we have proposed and implemented new techniques for the analysis of policies that rely on a deep study of state of the art techniques. Moreover, we propose an approach for solving heterogeneity problems that usually arise when considering the analysis of policies belonging to different domains. Our work focuses on analysis of access control policies written in the dialect of XACML (Extensible Access Control Markup Language). We consider XACML policies because XACML is a rich language which can represent many policies of interest to real world applications and is gaining widespread adoption in the industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis deals with an investigation of Decomposition and Reformulation to solve Integer Linear Programming Problems. This method is often a very successful approach computationally, producing high-quality solutions for well-structured combinatorial optimization problems like vehicle routing, cutting stock, p-median and generalized assignment . However, until now the method has always been tailored to the specific problem under investigation. The principal innovation of this thesis is to develop a new framework able to apply this concept to a generic MIP problem. The new approach is thus capable of auto-decomposition and autoreformulation of the input problem applicable as a resolving black box algorithm and works as a complement and alternative to the normal resolving techniques. The idea of Decomposing and Reformulating (usually called in literature Dantzig and Wolfe Decomposition DWD) is, given a MIP, to convexify one (or more) subset(s) of constraints (slaves) and working on the partially convexified polyhedron(s) obtained. For a given MIP several decompositions can be defined depending from what sets of constraints we want to convexify. In this thesis we mainly reformulate MIPs using two sets of variables: the original variables and the extended variables (representing the exponential extreme points). The master constraints consist of the original constraints not included in any slaves plus the convexity constraint(s) and the linking constraints(ensuring that each original variable can be viewed as linear combination of extreme points of the slaves). The solution procedure consists of iteratively solving the reformulated MIP (master) and checking (pricing) if a variable of reduced costs exists, and in which case adding it to the master and solving it again (columns generation), or otherwise stopping the procedure. The advantage of using DWD is that the reformulated relaxation gives bounds stronger than the original LP relaxation, in addition it can be incorporated in a Branch and bound scheme (Branch and Price) in order to solve the problem to optimality. If the computational time for the pricing problem is reasonable this leads in practice to a stronger speed up in the solution time, specially when the convex hull of the slaves is easy to compute, usually because of its special structure.