10 resultados para CONTINUOUS OVERGROUND WALKING
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In this thesis the application of biotechnological processes based on microbial metabolic degradation of halogenated compound has been investigated. Several studies showed that most of these pollutants can be biodegraded by single bacterial strains or mixed microbial population via aerobic direct metabolism or cometabolism using as a growth substrates aromatic or aliphatic hydrocarbons. The enhancement of two specific processes has been here object of study in relation with its own respective scenario described as follow: 1st) the bioremediation via aerobic cometabolism of soil contaminated by a high chlorinated compound using a mixed microbial population and the selection and isolation of consortium specific for the compound. 2nd) the implementation of a treatment technology based on direct metabolism of two pure strains at the exact point source of emission, preventing dilution and contamination of large volumes of waste fluids polluted by several halogenated compound minimizing the environmental impact. In order to verify the effect of these two new biotechnological application to remove halogenated compound and purpose them as a more efficient alternative continuous and batch tests have been set up in the experimental part of this thesis. Results obtained from the continuous tests in the second scenario have been supported by microbial analysis via Fluorescence in situ Hybridisation (FISH) and by a mathematical model of the system. The results showed that both process in its own respective scenario offer an effective solutions for the biological treatment of chlorinate compound pollution.
Resumo:
Healthcare, Human Computer Interfaces (HCI), Security and Biometry are the most promising application scenario directly involved in the Body Area Networks (BANs) evolution. Both wearable devices and sensors directly integrated in garments envision a word in which each of us is supervised by an invisible assistant monitoring our health and daily-life activities. New opportunities are enabled because improvements in sensors miniaturization and transmission efficiency of the wireless protocols, that achieved the integration of high computational power aboard independent, energy-autonomous, small form factor devices. Application’s purposes are various: (I) data collection to achieve off-line knowledge discovery; (II) user notification of his/her activities or in case a danger occurs; (III) biofeedback rehabilitation; (IV) remote alarm activation in case the subject need assistance; (V) introduction of a more natural interaction with the surrounding computerized environment; (VI) users identification by physiological or behavioral characteristics. Telemedicine and mHealth [1] are two of the leading concepts directly related to healthcare. The capability to borne unobtrusiveness objects supports users’ autonomy. A new sense of freedom is shown to the user, not only supported by a psychological help but a real safety improvement. Furthermore, medical community aims the introduction of new devices to innovate patient treatments. In particular, the extension of the ambulatory analysis in the real life scenario by proving continuous acquisition. The wide diffusion of emerging wellness portable equipment extended the usability of wearable devices also for fitness and training by monitoring user performance on the working task. The learning of the right execution techniques related to work, sport, music can be supported by an electronic trainer furnishing the adequate aid. HCIs made real the concept of Ubiquitous, Pervasive Computing and Calm Technology introduced in the 1988 by Marc Weiser and John Seeley Brown. They promotes the creation of pervasive environments, enhancing the human experience. Context aware, adaptive and proactive environments serve and help people by becoming sensitive and reactive to their presence, since electronics is ubiquitous and deployed everywhere. In this thesis we pay attention to the integration of all the aspects involved in a BAN development. Starting from the choice of sensors we design the node, configure the radio network, implement real-time data analysis and provide a feedback to the user. We present algorithms to be implemented in wearable assistant for posture and gait analysis and to provide assistance on different walking conditions, preventing falls. Our aim, expressed by the idea to contribute at the development of a non proprietary solutions, driven us to integrate commercial and standard solutions in our devices. We use sensors available on the market and avoided to design specialized sensors in ASIC technologies. We employ standard radio protocol and open source projects when it was achieved. The specific contributions of the PhD research activities are presented and discussed in the following. • We have designed and build several wireless sensor node providing both sensing and actuator capability making the focus on the flexibility, small form factor and low power consumption. The key idea was to develop a simple and general purpose architecture for rapid analysis, prototyping and deployment of BAN solutions. Two different sensing units are integrated: kinematic (3D accelerometer and 3D gyroscopes) and kinetic (foot-floor contact pressure forces). Two kind of feedbacks were implemented: audio and vibrotactile. • Since the system built is a suitable platform for testing and measuring the features and the constraints of a sensor network (radio communication, network protocols, power consumption and autonomy), we made a comparison between Bluetooth and ZigBee performance in terms of throughput and energy efficiency. Test in the field evaluate the usability in the fall detection scenario. • To prove the flexibility of the architecture designed, we have implemented a wearable system for human posture rehabilitation. The application was developed in conjunction with biomedical engineers who provided the audio-algorithms to furnish a biofeedback to the user about his/her stability. • We explored off-line gait analysis of collected data, developing an algorithm to detect foot inclination in the sagittal plane, during walk. • In collaboration with the Wearable Lab – ETH, Zurich, we developed an algorithm to monitor the user during several walking condition where the user carry a load. The remainder of the thesis is organized as follows. Chapter I gives an overview about Body Area Networks (BANs), illustrating the relevant features of this technology and the key challenges still open. It concludes with a short list of the real solutions and prototypes proposed by academic research and manufacturers. The domain of the posture and gait analysis, the methodologies, and the technologies used to provide real-time feedback on detected events, are illustrated in Chapter II. The Chapter III and IV, respectively, shown BANs developed with the purpose to detect fall and monitor the gait taking advantage by two inertial measurement unit and baropodometric insoles. Chapter V reports an audio-biofeedback system to improve balance on the information provided by the use centre of mass. A walking assistant based on the KNN classifier to detect walking alteration on load carriage, is described in Chapter VI.
Resumo:
The present PhD thesis summarizes two examples of research in microfluidics. Both times water was the subject of interest, once in the liquid state (droplets adsorbed on chemically functionalized surfaces), the other time in the solid state (ice snowflakes and their fractal behaviour). The first problem deals with a slipping nano-droplet of water adsorbed on a surface with photo-switchable wettability characteristics. Main focus was on identifying the underlying driving forces and mechanical principles at the molecular level of detail. Molecular Dynamics simulation was employed as investigative tool owing to its record of successfully describing the microscopic behaviour of liquids at interfaces. To reproduce the specialized surface on which a water droplet can effectively “walk”, a new implicit surface potential was developed. Applying this new method the experimentally observed droplet slippage could be reproduced successfully. Next the movement of the droplet was analyzed at various conditions emphasizing on the behaviour of the water molecules in contact with the surface. The main objective was to identify driving forces and molecular mechanisms underlying the slippage process. The second part of this thesis is concerned with theoretical studies of snowflake melting. In the present work snowflakes are represented by filled von Koch-like fractals of mesoscopic beads. A new algorithm has been developed from scratch to simulate the thermal collapse of fractal structures based on Monte Carlo and Random Walk Simulations (MCRWS). The developed method was applied and compared to Molecular Dynamics simulations regarding the melting of ice snowflake crystals and new parameters were derived from this comparison. Bigger snow-fractals were then studied looking at the time evolution at different temperatures again making use of the developed MCRWS method. This was accompanied by an in-depth analysis of fractal properties (border length and gyration radius) in order to shed light on the dynamics of the melting process.
Resumo:
During this work has been developed an innovative methodology for continuous and in situ gas monitoring (24/24 h) of fumarolic and soil diffusive emissions applied to the geothermal and volcanic area of Pisciarelli near Agnano inside the Campi Flegrei caldera (CFc). In literature there are only scattered and in discrete data of the geochemical gas composition of fumarole at Campi Flegrei; it is only since the early ’80 that exist a systematic record of fumaroles with discrete sampling at Solfatara (Bocca Grande and Bocca Nuova fumaroles) and since 1999, even at the degassing areas of Pisciarelli. This type of sampling has resulted in a time series of geochemical analysis with discontinuous periods of time set (in average 2-3 measurements per month) completely inadequate for the purposes of Civil Defence in such high volcanic risk and densely populated areas. For this purpose, and to remedy this lack of data, during this study was introduced a new methodology of continuous and in situ sampling able to continuously detect data related and from its soil diffusive degassing. Due to its high sampling density (about one measurement per minute therefore producing 1440 data daily) and numerous species detected (CO2, Ar, 36Ar, CH4, He, H2S, N2, O2) allowing a good statistic record and the reconstruction of the gas composition evolution of the investigated area. This methodology is based on continuous sampling of fumaroles gases and soil degassing using an extraction line, which after undergoing a series of condensation processes of the water vapour content - better described hereinafter - is analyzed through using a quadrupole mass spectrometer
Resumo:
Procedures for quantitative walking analysis include the assessment of body segment movements within defined gait cycles. Recently, methods to track human body motion using inertial measurement units have been suggested. It is not known if these techniques can be readily transferred to clinical measurement situations. This work investigates the aspects necessary for one inertial measurement unit mounted on the lower back to track orientation, and determine spatio-temporal features of gait outside the confines of a conventional gait laboratory. Apparent limitations of different inertial sensors can be overcome by fusing data using methods such as a Kalman filter. The benefits of optimizing such a filter for the type of motion are unknown. 3D accelerations and 3D angular velocities were collected for 18 healthy subjects while treadmill walking. Optimization of Kalman filter parameters improved pitch and roll angle estimates when compared to angles derived using stereophotogrammetry. A Weighted Fourier Linear Combiner method for estimating 3D orientation angles by constructing an analytical representation of angular velocities and allowing drift free integration is also presented. When tested this method provided accurate estimates of 3D orientation when compared to stereophotogrammetry. Methods to determine spatio-temporal features from lower trunk accelerations generally require knowledge of sensor alignment. A method was developed to estimate the instants of initial and final ground contact from accelerations measured by a waist mounted inertial device without rigorous alignment. A continuous wavelet transform method was used to filter and differentiate the signal and derive estimates of initial and final contact times. The technique was tested with data recorded for both healthy and pathologic (hemiplegia and Parkinson’s disease) subjects and validated using an instrumented mat. The results show that a single inertial measurement unit can assist whole body gait assessment however further investigation is required to understand altered gait timing in some pathological subjects.
Resumo:
More efficient water treatment technologies would decrease the water bodies’ pollution and the actual intake of water resource. The aim of this thesis is an in-depth analysis of the magnetic separation of pollutants from water by means of a continuous-flow magnetic filter subjected to a field gradient produced by permanent magnets. This technique has the potential to improve times and efficiencies of both urban wastewater treatment plants and drinking water treatment plants. It might also substitute industrial wastewater treatments. This technique combines a physico-chemical phase of adsorption and a magnetic phase of filtration, having the potential to bond magnetite with any conventional adsorbent powder. The removal of both Magnetic Activated Carbons (MACs) and zeolite-magnetite mix with the addition of a coagulant was investigated. Adsorption tests of different pollutants (surfactants, endocrine disruptors, Fe(III), Mn(II), Ca(II)) on these adsorbents were also performed achieving good results. The numerical results concerning the adsorbent removals well reproduced the experimental ones obtained from two different experimental setups. In real situations the treatable flow rates are up to 90 m3/h (2000 m3/d).
Resumo:
The complex process of gait is rendered partially automatic by central pattern generators (CPGs). To further our understanding of their role in gait control in healthy subjects, we applied a paradigm of anti-phase, or syncopated, movement to gait. To provide a context for our results, we reviewed the literature on in-phase, or synchronized, gait. The review results are as follows. Auditory cueing increased step/stride rate for older subjects, but not younger. Stride rate variability decreased for younger subjects, perhaps because the metronome’s cue acted as a temporal ‘anchor point’ for each step. Step width increased in half of the treadmill studies, but none of the overground ones, suggesting a cumulative effect of the attentional demands of synchronizing gait while on a treadmill. Time series analysis revealed that the α exponent was the most sensitive parameter reported, decreasing toward anti-persistence in almost all cued-gait studies. This project compares in-phase (IN) and anti-phase gait (ANTI) in young and old healthy subjects. We expected gait to be less disrupted during ANTI trials at preferred speed, when the facilitating effect of CPGs would be strongest. The measures step time variability, jerk index, and harmonic ratio quantified gait perturbation: none indicated that ANTI was easiest at preferred walking speed. Surprisingly, the gait of older subjects was no more perturbed than that of younger subjects. When they successfully matched the pace of the beat, they unwittingly synchronized to it. The temporal relationship of their steps to the beat was the same in the IN and ANTI conditions. Younger subjects, visibly struggling during ANTI trials, were able to walk in syncopation. This result suggests that cognitive resources available only to the younger group are required to resist synchronizing to the beat.
Resumo:
Neonicotinoids have been pointed to as a factor responsible for the increased honey bee colony losses in the last decades. Many studies have investigated the effects of the first marketed neonicotinoid, imidacloprid, while fewer have focused on thiamethoxam. One recent study showed that sublethal doses of thiamethoxam lead to colony failure by decreasing forager homing flight success. We thus decided to investigate the mechanism which caused this phenomenon. Our hypothesis was that this effect was caused by impairment of forager locomotion abilities. Therefore we tested the effects of sublethal acute and chronic exposures to thiamethoxam on forager walking (Chapter 2) and flight (Chapter 3) performances. The acute treatment (1.34 ng/bee) affected walking locomotion firstly triggering hyperactivity (30 min post-treatment) and then impairing motor functioning (60 min post-treatment). 2-day continuous exposures to thiamethoxam (32.5, 45 ppb) elicited fewer effects on walking locomotion, however both exposure modes elicited an increased positive phototaxis. Similarly, in flight experiments, the single dose (1.34 ng/bee) elicited hyperactivity shortly after intoxication (increased flight duration and distance), while longer and continuous exposures (32.5, 45 ppb) impaired forager motor functions (decreased flight duration, distance, velocity). It is known that flight muscles temperature needs to be precisely regulated by bees during flight. Therefore, we further hypothesized that the impaired flight performances of neonicotinoid intoxicated bees were caused also by thermoregulation anomalies. We tested the effects that acute thiamethoxam exposures (0.2, 1, 2 ng/bee) elicit on forager thorax temperature (Chapter 4). Foragers treated with high doses exhibited hyperthermia or hypothermia when respectively exposed to high or low environmental temperatures. In summary, we show that sublethal doses of thiamethoxam affected forager walking and flight locomotion, phototaxis and thermoregulation. We also display the intricate mode of action of thiamethoxam which triggered, at different extents, inverse sublethal effects in relation to time and dose.
Resumo:
The purpose of the first part of the research activity was to develop an aerobic cometabolic process in packed bed reactors (PBR) to treat real groundwater contaminated by trichloroethylene (TCE) and 1,1,2,2-tetrachloroethane (TeCA). In an initial screening conducted in batch bioreactors, different groundwater samples from 5 wells of the contaminated site were fed with 5 growth substrates. The work led to the selection of butane as the best growth substrate, and to the development and characterization from the site’s indigenous biomass of a suspended-cell consortium capable to degrade TCE with a 90 % mineralization of the organic chlorine. A kinetic study conducted in batch and continuous flow PBRs and led to the identification of the best carrier. A kinetic study of butane and TCE biodegradation indicated that the attached-cell consortium is characterized by a lower TCE specific degredation rates and by a lower level of mutual butane-TCE inhibition. A 31 L bioreactor was designed and set up for upscaling the experiment. The second part of the research focused on the biodegradation of 4 polymers, with and with-out chemical pre-treatments: linear low density polyethylene (LLDPE), polyethylene (PP), polystyrene (PS) and polyvinyl chloride (PVC). Initially, the 4 polymers were subjected to different chemical pre-treatments: ozonation and UV/ozonation, in gaseous and aqueous phase. It was found that, for LLDPE and PP, the coupling UV and ozone in gas phase is the most effective way to oxidize the polymers and to generate carbonyl groups on the polymer surface. In further tests, the effect of chemical pretreatment on polyner biodegrability was studied. Gas-phase ozonated and virgin polymers were incubated aerobically with: (a) a pure strain, (b) a mixed culture of bacteria; and (c) a fungal culture, together with saccharose as a co-substrate.