6 resultados para CONCRETE MASONRY

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is dedicated to the study of damaging phenomena involving reinforced concrete structures and masonry buildings and the consequences in terms of structural performances decay. In the Italian context there are many examples of structures that have already exceeded their service life, considering not only the ancient buildings but also infrastructures and R/C buildings that today are operating from more than 50th years. Climate change which is subject to the entire planet, with changing in seasonal weather and increasing in environmental pollution, is not excluded could have a harmful influence on the rate of building materials decay previously deemed as durables. If the aggressive input changes very fast, for example in a few decades, then it can also change the response of a construction material considered so far durable; in this way the knowledge about the art of good build, consolidated over the centuries, is thwarted. Hence this study is focused on the possibility to define the residual capacity for vertical or seismic loads for structures that are already at the limit of their service life, or for which is impossible to define a service life. The problem in an analysis of this kind, and that is what makes this research different from the main studies avaibles in the literature, is to keep in correlation – in a not so expensive computationally way – issues such as: - dangerous environmental inputs adequately simulated; - environmental conditions favorable to the spread of pollutants and development of the degradation reactions (decay’s speed); - link between environmental degradation and residual bearing capacity A more realistic assessment of materials residual performances that constitute the structure allows to leave the actual system for the residual load-bearing capacity estimation in which all factors are simply considered through the use of a safety factor on the materials properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to develop a model capable to capture the different contributions which characterize the nonlinear behaviour of reinforced concrete structures. In particular, especially for non slender structures, the contribution to the nonlinear deformation due to bending may be not sufficient to determine the structural response. Two different models characterized by a fibre beam-column element are here proposed. These models can reproduce the flexure-shear interaction in the nonlinear range, with the purpose to improve the analysis in shear-critical structures. The first element discussed is based on flexibility formulation which is associated with the Modified Compression Field Theory as material constitutive law. The other model described in this thesis is based on a three-field variational formulation which is associated with a 3D generalized plastic-damage model as constitutive relationship. The first model proposed in this thesis was developed trying to combine a fibre beamcolumn element based on the flexibility formulation with the MCFT theory as constitutive relationship. The flexibility formulation, in fact, seems to be particularly effective for analysis in the nonlinear field. Just the coupling between the fibre element to model the structure and the shear panel to model the individual fibres allows to describe the nonlinear response associated to flexure and shear, and especially their interaction in the nonlinear field. The model was implemented in an original matlab® computer code, for describing the response of generic structures. The simulations carried out allowed to verify the field of working of the model. Comparisons with available experimental results related to reinforced concrete shears wall were performed in order to validate the model. These results are characterized by the peculiarity of distinguishing the different contributions due to flexure and shear separately. The presented simulations were carried out, in particular, for monotonic loading. The model was tested also through numerical comparisons with other computer programs. Finally it was applied for performing a numerical study on the influence of the nonlinear shear response for non slender reinforced concrete (RC) members. Another approach to the problem has been studied during a period of research at the University of California Berkeley. The beam formulation follows the assumptions of the Timoshenko shear beam theory for the displacement field, and uses a three-field variational formulation in the derivation of the element response. A generalized plasticity model is implemented for structural steel and a 3D plastic-damage model is used for the simulation of concrete. The transverse normal stress is used to satisfy the transverse equilibrium equations of at each control section, this criterion is also used for the condensation of degrees of freedom from the 3D constitutive material to a beam element. In this thesis is presented the beam formulation and the constitutive relationships, different analysis and comparisons are still carrying out between the two model presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evaluation of structural performance of existing concrete buildings, built according to standards and materials quite different to those available today, requires procedures and methods able to cover lack of data about mechanical material properties and reinforcement detailing. To this end detailed inspections and test on materials are required. As a consequence tests on drilled cores are required; on the other end, it is stated that non-destructive testing (NDT) cannot be used as the only mean to get structural information, but can be used in conjunction with destructive testing (DT) by a representative correlation between DT and NDT. The aim of this study is to verify the accuracy of some formulas of correlation available in literature between measured parameters, i.e. rebound index, ultrasonic pulse velocity and compressive strength (SonReb Method). To this end a relevant number of DT and NDT tests has been performed on many school buildings located in Cesena (Italy). The above relationships have been assessed on site correlating NDT results to strength of core drilled in adjacent locations. Nevertheless, concrete compressive strength assessed by means of NDT methods and evaluated with correlation formulas has the advantage of being able to be implemented and used for future applications in a much more simple way than other methods, even if its accuracy is strictly limited to the analysis of concretes having the same characteristics as those used for their calibration. This limitation warranted a search for a different evaluation method for the non-destructive parameters obtained on site. To this aim, the methodology of neural identification of compressive strength is presented. Artificial Neural Network (ANN) suitable for the specific analysis were chosen taking into account the development presented in the literature in this field. The networks were trained and tested in order to detect a more reliable strength identification methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research has focused on the study of the behavior and of the collapse of masonry arch bridges. The latest decades have seen an increasing interest in this structural type, that is still present and in use, despite the passage of time and the variation of the transport means. Several strategies have been developed during the time to simulate the response of this type of structures, although even today there is no generally accepted standard one for assessment of masonry arch bridges. The aim of this thesis is to compare the principal analytical and numerical methods existing in literature on case studies, trying to highlight values and weaknesses. The methods taken in exam are mainly three: i) the Thrust Line Analysis Method; ii) the Mechanism Method; iii) the Finite Element Methods. The Thrust Line Analysis Method and the Mechanism Method are analytical methods and derived from two of the fundamental theorems of the Plastic Analysis, while the Finite Element Method is a numerical method, that uses different strategies of discretization to analyze the structure. Every method is applied to the case study through computer-based representations, that allow a friendly-use application of the principles explained. A particular closed-form approach based on an elasto-plastic material model and developed by some Belgian researchers is also studied. To compare the three methods, two different case study have been analyzed: i) a generic masonry arch bridge with a single span; ii) a real masonry arch bridge, the Clemente Bridge, built on Savio River in Cesena. In the analyses performed, all the models are two-dimensional in order to have results comparable between the different methods taken in exam. The different methods have been compared with each other in terms of collapse load and of hinge positions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis reports a study on the seismic response of two-dimensional squat elements and their effect on the behavior of building structures. Part A is devoted to the study of unreinforced masonry infills, while part B is focused on reinforced concrete sandwich walls. Part A begins with a comprehensive review of modelling techniques and code provisions for infilled frame structures. Then state-of-the practice techniques are applied for a real case to test the ability of actual modeling techniques to reproduce observed behaviors. The first developments towards a seismic-resistant masonry infill system are presented. Preliminary design recommendations for the seismic design of the seismic-resistant masonry infill are finally provided. Part B is focused on the seismic behavior of a specific reinforced concrete sandwich panel system. First, the results of in-plane psuudostatic cyclic tests are described. Refinements to the conventional modified compression field theory are introduced in order to better simulate the monotonic envelope of the cyclic response. The refinements deal with the constitutive model for the shotcrete in tension and the embedded bars. Then the hysteretic response of the panels is studied according to a continuum damage model. Damage state limits are identified. Design recommendations for the seismic design of the studied reinforced concrete sandwich walls are finally provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmental decay in porous masonry materials, such as brick and mortar, is a widespread problem concerning both new and historic masonry structures. The decay mechanisms are quite complex dependng upon several interconnected parameters and from the interaction with the specific micro-climate. Materials undergo aesthetical and substantial changes in character but while many studies have been carried out, the mechanical aspect has been largely understudied while it bears true importance from the structural viewpoint. A quantitative assessment of the masonry material degradation and how it affects the load-bearing capacity of masonry structures appears missing. The research work carried out, limiting the attention to brick masonry addresses this issue through an experimental laboratory approach via different integrated testing procedures, both non-destructive and mechanical, together with monitoring methods. Attention was focused on transport of moisture and salts and on the damaging effects caused by the crystallization of two different salts, sodium chloride and sodium sulphate. Many series of masonry specimens, very different in size and purposes were used to track the damage process since its beginning and to monitor its evolution over a number of years Athe same time suitable testing techniques, non-destructive, mini-invasive, analytical, of monitoring, were validated for these purposes. The specimens were exposed to different aggressive agents (in terms of type of salt, of brine concentration, of artificial vs. open-air natural ageing, …), tested by different means (qualitative vs. quantitative, non destructive vs. mechanical testing, punctual vs. wide areas, …), and had different size (1-, 2-, 3-header thick walls, full-scale walls vs. small size specimens, brick columns and triplets vs. small walls, masonry specimens vs. single units of brick and mortar prisms, …). Different advanced testing methods and novel monitoring techniques were applied in an integrated holistic approach, for quantitative assessment of masonry health state.