5 resultados para CD62L, naive T cells, adoptive T cell transfer
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Stem cells are one of the most fascinating areas of biology today, and since the discover of an adult population, i.e., adult Stem Cells (aSCs), they have generated much interest especially for their application potential as a source for cell based regenerative medicine and tissue engineering. aSCs have been found in different tissues including bone marrow, skin, intestine, central nervous system, where they reside in a special microenviroment termed “niche” which regulate the homeostasis and repair of adult tissues. The arterial wall of the blood vessels is much more plastic than ever before believed. Several animal studies have demonstrated the presence of cells with stem cell characteristics within the adult vessels. Recently, it has been also hypothesized the presence of a “vasculogenic zone” in human adult arteries in which a complete hierarchy of resident stem cells and progenitors could be niched during lifetime. Accordingly, it can be speculated that in that location resident mesenchymal stem cells (MSCs) with the ability to differentiate in smooth muscle cells, surrounding pericytes and fibroblasts are present. The present research was aimed at identifying in situ and isolating MSCs from thoracic aortas of young and healthy heart-beating multiorgan donors. Immunohistochemistry performed on fresh and frozen human thoracic aortas demonstrated the presence of the vasculogenic zone between the media and the adventitial layers in which a well preserved plexus of CD34 positive cells was found. These cells expressed intensely HLA-I antigens both before and after cryopreservation and after 4 days of organ cultures remained viable. Following these preliminary results, we succeeded to isolate mesenchymal cells from multi-organ thoracic aortas using a mechanical and enzymatic combined procedure. Cells had phenotypic characteristics of MSC i.e., CD44+, CD90+, CD105+, CD166+, CD34low, CD45- and revealed a transcript expression of stem cell markers, e.g., OCT4, c-kit, BCRP-1, IL6 and BMI-1. As previously documented using bone marrow derived MSCs, resident vascular wall MSCs were able to differentiate in vitro into endothelial cells in the presence of low-serum supplemented with VEGF-A (50 ng/ml) for 7 days. Under the condition described above, cultured cells showed an increased expression of KDR and eNOS, down-regulation of the CD133 transcript, vWF expression as documented by flow cytometry, immunofluorescence, qPCR and TEM. Moreover, matrigel assay revealed that VEGF induced cells were able to form capillary-like structures within 6 hours of seeding. In summary, these findings indicate that thoracic aortas from heart-beating, multi-organ donors are highly suitable for obtaining MSCs with the ability to differentiate in vitro into endothelial cells. Even though their differentiating potential remains to be fully established, it is believed that their angiogenic ability could be a useful property for allogenic use. These cells can be expanded rapidly, providing numbers which are adequate for therapeutic neovascularization; furthermore they can be cryostored in appropriate cell banking facilities for later use.
Resumo:
The effector function of natural killer (NK) cells is regulated by activating and inhibitory receptors, termed killer immunoglobulin-like receptors (KIRs). In haploidentical T-cell depleted transplantation the donor/recipient KIR mismatch significantly impacts on NK-mediated tumor cell killing, particularly in acute myeloid leukaemia (AML). Thirty-four high risk AML patients entered a phase I-II study of adoptive NK-cell based immunotherapy and were screened for the availability of one haploidentical KIR ligand mismatched donor. Thirteen of them resulted as having one suitable donor. NK cells were enriched from steady-state leukaphereses by using a double-step immunomagnetic separation system, consisting in depletion of CD3+ T cells followed by positive selection of CD56+ NK cells. CD56+ cells were enriched from 7,70% (1,26-11,70) to 93,50% (66,41-99,20) (median recovery 53,05% (30,97-72,85), median T-depletion 3,03 log (2,15-4,52) viability >92%) and their citotoxic activity was inalterate. All patients (4 progressions, 1 partial remission and 8 complete remissions) received NK cell infusion which was preceeded by immunosuppressive chemotherapy (fludarabine and cyclophosphamide) and followed by interleukin 2 injections. The median number of reinfused NK cells was 2,74x10(e)6/kg(1,11-5,00) and contamining CD3+ T cells were always less than 1x10(e)5/kg. The procedure was well-tolerated and no significant toxicity, including GvHD, related to NK cell infusion was observed. The donor NK cells were demonstrated in 5/10 patients. Among the 8 patients in complete remission 5 patients are stable after 18, 15, 4, 2 months of follow-up. Three other patients relapsed after 2 and 7 months. The patient in partial remission obtained a complete remission, which lasted for 6 months. The 4 patients with active/progressive disease showed the persistence of disease. This clinical observation may be correlated with in vitro studies, indicating that AML cells are capable to induce NK cell apoptosis in a dose-depend manner. In summery, a two-step enrichment of CD56+ NK cells allows the collection of a suitable number of target cells to be used as adoptive immunotherapy in AML patients. Infusion of NK cells is feasible and safe and adoptively transferred NK cells can be detected after infusion.
Resumo:
Critical lower limb ischemia is a severe disease. A common approach is infrainguinal bypass. Synthetic vascular prosthesis, are good conduits in high-flow low-resistance conditions but have difficulty in their performance as small diameter vessel grafts. A new approach is the use of native decellularized vascular tissues. Cell-free vessels are expected to have improved biocompatibility when compared to synthetic and are optimal natural 3D matrix templates for driving stem cell growth and tissue assembly in vivo. Decellularization of tissues represent a promising field for regenerative medicine, with the aim to develop a methodology to obtain small-diameter allografts to be used as a natural scaffold suited for in vivo cell growth and pseudo-tissue assembly, eliminating failure caused from immune response activation. Material and methods. Umbilical cord-derived mesenchymal cells isolated from human umbilical cord tissue were expanded in advanced DMEM. Immunofluorescence and molecular characterization revealed a stem cell profile. A non-enzymatic protocol, that associate hypotonic shock and low-concentration ionic detergent, was used to decellularize vessel segments. Cells were seeded cell-free scaffolds using a compound of fibrin and thrombin and incubated in DMEM, after 4 days of static culture they were placed for 2 weeks in a flow-bioreactor, mimicking the cardiovascular pulsatile flow. After dynamic culture, samples were processed for histological, biochemical and ultrastructural analysis. Discussion. Histology showed that the dynamic culture cells initiate to penetrate the extracellular matrix scaffold and to produce components of the ECM, as collagen fibres. Sirius Red staining showed layers of immature collagen type III and ultrastructural analysis revealed 30 nm thick collagen fibres, presumably corresponding to the immature collagen. These data confirm the ability of cord-derived cells to adhere and penetrate a natural decellularized tissue and to start to assembly into new tissue. This achievement makes natural 3D matrix templates prospectively valuable candidates for clinical bypass procedures
Resumo:
CD99 is a 32 kDa transmembrane protein whose high expression characterizes Ewing sarcoma (ES), a very aggressive pediatric bone tumor. In addition to its diagnostic value, CD99 has therapeutic potential since it leads to rapid and massive ES cell death when engaged with specific antibodies. Here a novel mechanism of cell death triggered via CD99 is shown, leading, ultimately, to the appearance of macropinocytotic vescicles. Anti-CD99 mAb 0662 induces MDM2 ubiquitination and degradation, which causes not only a p53 reactivation but also the IGF-1R induction and its subsequent internalization; CD99 results internalized together with IGF-1R inside endosomes, but then the two molecules display a different sorting: CD99 is degraded, while IGF-1R is recycled on the surface, causing, as a final step, the up-regulation of RAS-MAPK. High-expressing CD99 mesenchymal stem cells show mild Ras induction but no p53 activation and escape cell death, but in presence of EWS/FLI1 mesenchymal stem cells expressing CD99 show a stronger Ras induction and a p53 reactivation, leading to a significant cell death rate. We propose that CD99 triggering in a EWS/FLI1-driven oncogenetic context creates a synergy between RAS upregulation and p53 activation in ES cells, leading to cell death. Moreover, our data rule out possible concerns on toxicity related to the broad CD99 expression in normal tissues and provide the rationale for the therapeutic use of anti-CD99 MAbs in the clinic.
Resumo:
Discovery of the Nox family has led to the concept that ROS are “intentionally” generated and are biologically functional in various cell types. Over the last decades, ROS have been shown to be involved in several physiological and pathological processes and ROS producing enzymes have been suggested as a target for drug development. The mechanism involved in the prosurvival effect of cytokines on the human acute myeloid leukaemia cell lines M07e and B1647 is investigated. A decrease in intracellular reactive oxygen species (ROS) content, glucose transport activity and cell survival was observed in the presence of inhibitors of plasma membrane ROS sources, such as DPI and apocynin, and by small interference RNA for NOX2 in M07e cells. Furthermore, Nox generated ROS are required to sustain B1647 cell viability and proliferation; in fact, antioxidants such as EUK-134 or Nox inhibitors and siRNA direct cells to apoptotic cell death, suggesting that manipulation of cellular NOX2 and NOX4 could affect survival of leukemic cells. Moreover, hydrogen peroxide has been long thought to be freely diffusible but recent evidence suggest that specific mammalian aquaporin homologues (AQP8) possess the capacity to channel H2O2 across membrane. In this thesis is shown that inhibition of aquaporins diminishes intracellular ROS accumulation either when H2O2 is produced by Nox enzymes or when is added exogenously to the medium. These data suggest that specific inhibition of Nox enzymes and AQP8 could be an interesting novel anti-leukemic strategy.