2 resultados para CATHETER-RELATED INFECTIONS

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Staphylococcus aureus and Staphylococcus epidermidis are leading pathogens of implant-related infections. This study aimed at investigating the diverse distribution of different bacterial pathogen factors in most prevalent S. aureus and S. epidermidis strain types causing orthopaedic implant infections. In this study the presence both of the ica genes, encoding for biofilm exopolysaccharide production, and the insertion sequence IS256, a mobile element frequently associated to transposons, was investigated in relationship with the prevalence of antibiotic resistance among Staphylococcus epidermidis strains. The investigation was conducted on 70 clinical isolates derived from orthopaedic implant infections. Among the clinical isolates investigated a dramatic high level of association was found between the presence of ica genes as well as of IS256 and multiple resistance to all the antibiotics tested. Noteworthy, a striking full association between the presence of IS256 and resistance to gentamicin was found, being none of the IS256-negative strain resistant to this antibiotic. This association is probably because of the link of the corresponding aminoglycoside-resistance genes, and IS256, often co-existing within the same staphylococcal transposon. Moreover we investigated the prevalence of aac(6’)-Ie-aph(2’’), aph (3’) IIIa, and ant(4’) genes, encoding for the three forms of aminoglycoside-modifying enzymes (AME), responsible for resistance to aminoglycoside antibiotics. All isolates were characterized by automated ribotyping, so that the presence of antibiotic resistance determinants was investigated in strains exhibiting different ribopatterns. Interestingly, combinations of coexisting AME genes appeared to be typical of specific ribopatterns. 200 S. aureus isolates, categorized into ribogroups by automated ribotyping, i.e. rDNA restriction fragment length polymorphism analysis, were screened for the presence of a panel of adhesins genes, accessory gene regulatory (agr) polymorphisms and toxins. For many ribogroups, characteristic tandem genes arrangements could be identified. Surprisingly, the isolates of the most prevalent cluster, enlisting 27 isolates, were susceptible to almost all antibiotics and never possessed the lukD/lukE gene, thus suggesting the role of factors other than antibiotic resistance and the here investigated toxins in driving the major epidemic clone to the larger success. Afterwards, .in the predominant S. aureus cluster, the bbp gene encoding bone sialoprotein-binding protein appeared a typical virulence trait, found in 93% of the isolates. Conversely, the bbp gene was identified in just 10% of the remaining isolates of the collection. In this cluster, co-presence of bbp with the cna gene encoding collagen adhesin was a pattern consistently observed. These findings indicate a crucial role of both these adhesins, able to bind the most abundant bone proteins, in the pathogenesis of orthopaedic implant infections, there where biomaterials interface bone tissues. Moreover a PCR screening for the ebpS gene, conducted on over two hundred S. aureus clinical isolates from implant related infections revealed the detection of six strains exhibiting an altered amplicon size, shorter than expected. In order to elucidate the sequence changes present in these gene variants, the trait comprised between the primers was analyzed in all six isolates bearing the modification and in four isolates exhibiting the regular amplicon size. From nucleotide translation, the corresponding encoded protein was found to lack an entire peptide segment of 60 amino acids. These variants, missing an entire hydrophobic region, could actually facilitate current structural studies, helping to assess whether the absent domain is strictly necessary for a functional adhesin conformation and its contribution to the topology of the protein. This study suggests that epidemic clones appear to pursue different survival strategies, where adhesins, when present, exhibit diverse importance as virulence factors. A practical message arising from the present study is that strategies for the prevention and treatment of implant orthopaedic infections should target adhesins conjointly present in epidemic clones. Furthermore, the choice of reference strains for testing the anti-infective properties of biomaterials should focus on a selection of the most prevalent clones as they exhibit distinct profiles of adhesins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This PhD thesis discusses the rationale for design and use of synthetic oligosaccharides for the development of glycoconjugate vaccines and the role of physicochemical methods in the characterization of these vaccines. The study concerns two infectious diseases that represent a serious problem for the national healthcare programs: human immunodeficiency virus (HIV) and Group A Streptococcus (GAS) infections. Both pathogens possess distinctive carbohydrate structures that have been described as suitable targets for the vaccine design. The Group A Streptococcus cell membrane polysaccharide (GAS-PS) is an attractive vaccine antigen candidate based on its conserved, constant expression pattern and the ability to confer immunoprotection in a relevant mouse model. Analysis of the immunogenic response within at-risk populations suggests an inverse correlation between high anti-GAS-PS antibody titres and GAS infection cases. Recent studies show that a chemically synthesized core polysaccharide-based antigen may represent an antigenic structural determinant of the large polysaccharide. Based on GAS-PS structural analysis, the study evaluates the potential to exploit a synthetic design approach to GAS vaccine development and compares the efficiency of synthetic antigens with the long isolated GAS polysaccharide. Synthetic GAS-PS structural analogues were specifically designed and generated to explore the impact of antigen length and terminal residue composition. For the HIV-1 glycoantigens, the dense glycan shield on the surface of the envelope protein gp120 was chosen as a target. This shield masks conserved protein epitopes and facilitates virus spread via binding to glycan receptors on susceptible host cells. The broadly neutralizing monoclonal antibody 2G12 binds a cluster of high-mannose oligosaccharides on the gp120 subunit of HIV-1 Env protein. This oligomannose epitope has been a subject to the synthetic vaccine development. The cluster nature of the 2G12 epitope suggested that multivalent antigen presentation was important to develop a carbohydrate based vaccine candidate. I describe the development of neoglycoconjugates displaying clustered HIV-1 related oligomannose carbohydrates and their immunogenic properties.