4 resultados para CATALYTIC-PROPERTIES

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Selective oxidation is one of the simplest functionalization methods and essentially all monomers used in manufacturing artificial fibers and plastics are obtained by catalytic oxidation processes. Formally, oxidation is considered as an increase in the oxidation number of the carbon atoms, then reactions such as dehydrogenation, ammoxidation, cyclization or chlorination are all oxidation reactions. In this field, most of processes for the synthesis of important chemicals used vanadium oxide-based catalysts. These catalytic systems are used either in the form of multicomponent mixed oxides and oxysalts, e.g., in the oxidation of n-butane (V/P/O) and of benzene (supported V/Mo/O) to maleic anhydride, or in the form of supported metal oxide, e.g., in the manufacture of phthalic anhydride by o-xylene oxidation, of sulphuric acid by oxidation of SO2, in the reduction of NOx with ammonia and in the ammoxidation of alkyl aromatics. In addition, supported vanadia catalysts have also been investigated for the oxidative dehydrogenation of alkanes to olefins , oxidation of pentane to maleic anhydride and the selective oxidation of methanol to formaldehyde or methyl formate [1]. During my PhD I focused my work on two gas phase selective oxidation reactions. The work was done at the Department of Industrial Chemistry and Materials (University of Bologna) in collaboration with Polynt SpA. Polynt is a leader company in the development, production and marketing of catalysts for gas-phase oxidation. In particular, I studied the catalytic system for n-butane oxidation to maleic anhydride (fluid bed technology) and for o-xylene oxidation to phthalic anhydride. Both reactions are catalyzed by systems based on vanadium, but catalysts are completely different. Part A is dedicated to the study of V/P/O catalyst for n-butane selective oxidation, while in the Part B the results of an investigation on TiO2-supported V2O5, catalyst for o-xylene oxidation are showed. In Part A, a general introduction about the importance of maleic anhydride, its uses, the industrial processes and the catalytic system are reported. The reaction is the only industrial direct oxidation of paraffins to a chemical intermediate. It is produced by n-butane oxidation either using fixed bed and fluid bed technology; in both cases the catalyst is the vanadyl pyrophosphate (VPP). Notwithstanding the good performances, the yield value didn’t exceed 60% and the system is continuously studied to improve activity and selectivity. The main open problem is the understanding of the real active phase working under reaction conditions. Several articles deal with the role of different crystalline and/or amorphous vanadium/phosphorous (VPO) compounds. In all cases, bulk VPP is assumed to constitute the core of the active phase, while two different hypotheses have been formulated concerning the catalytic surface. In one case the development of surface amorphous layers that play a direct role in the reaction is described, in the second case specific planes of crystalline VPP are assumed to contribute to the reaction pattern, and the redox process occurs reversibly between VPP and VOPO4. Both hypotheses are supported also by in-situ characterization techniques, but the experiments were performed with different catalysts and probably under slightly different working conditions. Due to complexity of the system, these differences could be the cause of the contradictions present in literature. Supposing that a key role could be played by P/V ratio, I prepared, characterized and tested two samples with different P/V ratio. Transformation occurring on catalytic surfaces under different conditions of temperature and gas-phase composition were studied by means of in-situ Raman spectroscopy, trying to investigate the changes that VPP undergoes during reaction. The goal is to understand which kind of compound constituting the catalyst surface is the most active and selective for butane oxidation reaction, and also which features the catalyst should possess to ensure the development of this surface (e.g. catalyst composition). On the basis of results from this study, it could be possible to project a new catalyst more active and selective with respect to the present ones. In fact, the second topic investigated is the possibility to reproduce the surface active layer of VPP onto a support. In general, supportation is a way to improve mechanical features of the catalysts and to overcome problems such as possible development of local hot spot temperatures, which could cause a decrease of selectivity at high conversion, and high costs of catalyst. In literature it is possible to find different works dealing with the development of supported catalysts, but in general intrinsic characteristics of VPP are worsened due to the chemical interaction between active phase and support. Moreover all these works deal with the supportation of VPP; on the contrary, my work is an attempt to build-up a V/P/O active layer on the surface of a zirconia support by thermal treatment of a precursor obtained by impregnation of a V5+ salt and of H3PO4. In-situ Raman analysis during the thermal treatment, as well as reactivity tests are used to investigate the parameters that may influence the generation of the active phase. Part B is devoted to the study of o-xylene oxidation of phthalic anhydride; industrially, the reaction is carried out in gas-phase using as catalysts a supported system formed by V2O5 on TiO2. The V/Ti/O system is quite complex; different vanadium species could be present on the titania surface, as a function of the vanadium content and of the titania surface area: (i) V species which is chemically bound to the support via oxo bridges (isolated V in octahedral or tetrahedral coordination, depending on the hydration degree), (ii) a polymeric species spread over titania, and (iii) bulk vanadium oxide, either amorphous or crystalline. The different species could have different catalytic properties therefore changing the relative amount of V species can be a way to optimize the catalytic performances of the system. For this reason, samples containing increasing amount of vanadium were prepared and tested in the oxidation of o-xylene, with the aim of find a correlations between V/Ti/O catalytic activity and the amount of the different vanadium species. The second part deals with the role of a gas-phase promoter. Catalytic surface can change under working conditions; the high temperatures and a different gas-phase composition could have an effect also on the formation of different V species. Furthermore, in the industrial practice, the vanadium oxide-based catalysts need the addition of gas-phase promoters in the feed stream, that although do not have a direct role in the reaction stoichiometry, when present leads to considerable improvement of catalytic performance. Starting point of my investigation is the possibility that steam, a component always present in oxidation reactions environment, could cause changes in the nature of catalytic surface under reaction conditions. For this reason, the dynamic phenomena occurring at the surface of a 7wt% V2O5 on TiO2 catalyst in the presence of steam is investigated by means of Raman spectroscopy. Moreover a correlation between the amount of the different vanadium species and catalytic performances have been searched. Finally, the role of dopants has been studied. The industrial V/Ti/O system contains several dopants; the nature and the relative amount of promoters may vary depending on catalyst supplier and on the technology employed for the process, either a single-bed or a multi-layer catalytic fixed-bed. Promoters have a quite remarkable effect on both activity and selectivity to phthalic anhydride. Their role is crucial, and the proper control of the relative amount of each component is fundamental for the process performance. Furthermore, it can not be excluded that the same promoter may play different role depending on reaction conditions (T, composition of gas phase..). The reaction network of phthalic anhydride formation is very complex and includes several parallel and consecutive reactions; for this reason a proper understanding of the role of each dopant cannot be separated from the analysis of the reaction scheme. One of the most important promoters at industrial level, which is always present in the catalytic formulations is Cs. It is known that Cs plays an important role on selectivity to phthalic anhydride, but the reasons of this phenomenon are not really clear. Therefore the effect of Cs on the reaction scheme has been investigated at two different temperature with the aim of evidencing in which step of the reaction network this promoter plays its role.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the last years we assisted to an exponential growth of scientific discoveries for catalysis by gold and many applications have been found for Au-based catalysts. In the literature there are several studies concerning the use of gold-based catalysts for environmental applications and good results are reported for the catalytic combustion of different volatile organic compounds (VOCs). Recently it has also been established that gold-based catalysts are potentially capable of being effectively employed in fuel cells in order to remove CO traces by preferential CO oxidation in H2-rich streams. Bi-metallic catalysts have attracted increasing attention because of their markedly different properties from either of the costituent metals, and above all their enhanced catalytic activity, selectivity and stability. In the literature there are several studies demostrating the beneficial effect due to the addition of an iron component to gold supported catalysts in terms of enhanced activity, selectivity, resistence to deactivation and prolonged lifetime of the catalyst. In this work we tried to develop a methodology for the preparation of iron stabilized gold nanoparticles with controlled size and composition, particularly in terms of obtaining an intimate contact between different phases, since it is well known that the catalytic behaviour of multi-component supported catalysts is strongly influenced by the size of the metal particles and by their reciprocal interaction. Ligand stabilized metal clusters, with nanometric dimensions, are possible precursors for the preparation of catalytically active nanoparticles with controlled dimensions and compositions. Among these, metal carbonyl clusters are quite attractive, since they can be prepared with several different sizes and compositions and, moreover, they are decomposed under very mild conditions. A novel preparation method was developed during this thesis for the preparation of iron and gold/iron supported catalysts using bi-metallic carbonyl clusters as precursors of highly dispersed nanoparticles over TiO2 and CeO2, which are widely considered two of the most suitable supports for gold nanoparticles. Au/FeOx catalysts were prepared by employing the bi-metallic carbonyl cluster salts [NEt4]4[Au4Fe4(CO)16] (Fe/Au=1) and [NEt4][AuFe4(CO)16] (Fe/Au=4), and for comparison FeOx samples were prepared by employing the homometallic [NEt4][HFe3(CO)11] cluster. These clusters were prepared by Prof. Longoni research group (Department of Physical and Inorganic Chemistry- University of Bologna). Particular attention was dedicated to the optimization of a suitable thermal treatment in order to achieve, apart from a good Au and Fe metal dispersion, also the formation of appropriate species with good catalytic properties. A deep IR study was carried out in order to understand the physical interaction between clusters and different supports and detect the occurrence of chemical reactions between them at any stage of the preparation. The characterization by BET, XRD, TEM, H2-TPR, ICP-AES and XPS was performed in order to investigate the catalysts properties, whit particular attention to the interaction between Au and Fe and its influence on the catalytic activity. This novel preparation method resulted in small gold metallic nanoparticles surrounded by highly dispersed iron oxide species, essentially in an amorphous phase, on both TiO2 and CeO2. The results presented in this thesis confirmed that FeOx species can stabilize small Au particles, since keeping costant the gold content but introducing a higher iron amount a higher metal dispersion was achieved. Partial encapsulation of gold atoms by iron species was observed since the Au/Fe surface ratio was found much lower than bulk ratio and a strong interaction between gold and oxide species, both of iron oxide and supports, was achieved. The prepared catalysts were tested in the total oxidation of VOCs, using toluene and methanol as probe molecules for aromatics and alchols, respectively, and in the PROX reaction. Different performances were observed on titania and ceria catalysts, on both toluene and methanol combustion. Toluene combustion on titania catalyst was found to be enhanced increasing iron loading while a moderate effect on FeOx-Ti activity was achieved by Au addition. In this case toluene combustion was improved due to a higher oxygen mobility depending on enhanced oxygen activation by FeOx and Au/FeOx dispersed on titania. On the contrary ceria activity was strongly decreased in the presence of FeOx, while the introduction of gold was found to moderate the detrimental effect of iron species. In fact, excellent ceria performances are due to its ability to adsorb toluene and O2. Since toluene activation is the determining factor for its oxidation, the partial coverage of ceria sites, responsible of toluene adsorption, by FeOx species finely dispersed on the surface resulted in worse efficiency in toluene combustion. Better results were obtained for both ceria and titania catalysts on methanol total oxidation. In this case, the performances achieved on differently supported catalysts indicate that the oxygen mobility is the determining factor in this reaction. The introduction of gold on both TiO2 and CeO2 catalysts, lead to a higher oxygen mobility due to the weakening of both Fe-O and Ce-O bonds and consequently to enhanced methanol combustion. The catalytic activity was found to strongly depend on oxygen mobility and followed the same trend observed for catalysts reducibility. Regarding CO PROX reaction, it was observed that Au/FeOx titania catalysts are less active than ceria ones, due to the lower reducibility of titania compared to ceria. In fact the availability of lattice oxygen involved in PROX reaction is much higher in the latter catalysts. However, the CO PROX performances observed for ceria catalysts are not really high compared to data reported in literature, probably due to the very low Au/Fe surface ratio achieved with this preparation method. CO preferential oxidation was found to strongly depend on Au particle size but also on surface oxygen reducibility, depending on the different oxide species which can be formed using different thermal treatment conditions or varying the iron loading over the support.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The following Ph.D work was mainly focused on catalysis, as a key technology, to achieve the objectives of sustainable (green) chemistry. After introducing the concepts of sustainable (green) chemistry and an assessment of new sustainable chemical technologies, the relationship between catalysis and sustainable (green) chemistry was briefly discussed and illustrated via an analysis of some selected and relevant examples. Afterwards, as a continuation of the ongoing interest in Dr. Marco Bandini’s group on organometallic and organocatalytic processes, I addressed my efforts to the design and development of novel catalytic green methodologies for the synthesis of enantiomerically enriched molecules. In the first two projects the attention was focused on the employment of solid supports to carry out reactions that still remain a prerogative of omogeneous catalysis. Firstly, particular emphasis was addressed to the discovery of catalytic enantioselective variants of nitroaldol condensation (commonly termed Henry reaction), using a complex consisting in a polyethylene supported diamino thiopene (DATx) ligands and copper as active species. In the second project, a new class of electrochemically modified surfaces with DATx palladium complexes was presented. The DATx-graphite system proved to be efficient in promoting the Suzuki reaction. Moreover, in collaboration with Prof. Wolf at the University of British Columbia (Vancouver), cyclic voltammetry studies were reported. This study disclosed new opportunities for carbon–carbon forming processes by using heterogeneous, electrodeposited catalyst films. A straightforward metal-free catalysis allowed the exploration around the world of organocatalysis. In fact, three different and novel methodologies, using Cinchona, Guanidine and Phosphine derivatives, were envisioned in the three following projects. An interesting variant of nitroaldol condensation with simple trifluoromethyl ketones and also their application in a non-conventional activation of indolyl cores by Friedel-Crafts-functionalization, led to two novel synthetic protocols. These approaches allowed the preparation of synthetically useful trifluoromethyl derivatives bearing quaternary stereocenters. Lastly, in the sixth project the first γ-alkylation of allenoates with conjugated carbonyl compounds was envisioned. In the last part of this Ph.D thesis bases on an extra-ordinary collaboration with Prof. Balzani and Prof. Gigli, I was involved in the synthesis and characterization of a new type of heteroleptic cyclometaled-Ir(III) complexes, bearing bis-oxazolines (BOXs) as ancillary ligands. The new heteroleptic complexes were fully characterized and in order to examine the electroluminescent properties of FIrBOX(CH2), an Organic Light Emitting Device was realized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, it is clear that the target of creating a sustainable future for the next generations requires to re-think the industrial application of chemistry. It is also evident that more sustainable chemical processes may be economically convenient, in comparison with the conventional ones, because fewer by-products means lower costs for raw materials, for separation and for disposal treatments; but also it implies an increase of productivity and, as a consequence, smaller reactors can be used. In addition, an indirect gain could derive from the better public image of the company, marketing sustainable products or processes. In this context, oxidation reactions play a major role, being the tool for the production of huge quantities of chemical intermediates and specialties. Potentially, the impact of these productions on the environment could have been much worse than it is, if a continuous efforts hadn’t been spent to improve the technologies employed. Substantial technological innovations have driven the development of new catalytic systems, the improvement of reactions and process technologies, contributing to move the chemical industry in the direction of a more sustainable and ecological approach. The roadmap for the application of these concepts includes new synthetic strategies, alternative reactants, catalysts heterogenisation and innovative reactor configurations and process design. Actually, in order to implement all these ideas into real projects, the development of more efficient reactions is one primary target. Yield, selectivity and space-time yield are the right metrics for evaluating the reaction efficiency. In the case of catalytic selective oxidation, the control of selectivity has always been the principal issue, because the formation of total oxidation products (carbon oxides) is thermodynamically more favoured than the formation of the desired, partially oxidized compound. As a matter of fact, only in few oxidation reactions a total, or close to total, conversion is achieved, and usually the selectivity is limited by the formation of by-products or co-products, that often implies unfavourable process economics; moreover, sometimes the cost of the oxidant further penalizes the process. During my PhD work, I have investigated four reactions that are emblematic of the new approaches used in the chemical industry. In the Part A of my thesis, a new process aimed at a more sustainable production of menadione (vitamin K3) is described. The “greener” approach includes the use of hydrogen peroxide in place of chromate (from a stoichiometric oxidation to a catalytic oxidation), also avoiding the production of dangerous waste. Moreover, I have studied the possibility of using an heterogeneous catalytic system, able to efficiently activate hydrogen peroxide. Indeed, the overall process would be carried out in two different steps: the first is the methylation of 1-naphthol with methanol to yield 2-methyl-1-naphthol, the second one is the oxidation of the latter compound to menadione. The catalyst for this latter step, the reaction object of my investigation, consists of Nb2O5-SiO2 prepared with the sol-gel technique. The catalytic tests were first carried out under conditions that simulate the in-situ generation of hydrogen peroxide, that means using a low concentration of the oxidant. Then, experiments were carried out using higher hydrogen peroxide concentration. The study of the reaction mechanism was fundamental to get indications about the best operative conditions, and improve the selectivity to menadione. In the Part B, I explored the direct oxidation of benzene to phenol with hydrogen peroxide. The industrial process for phenol is the oxidation of cumene with oxygen, that also co-produces acetone. This can be considered a case of how economics could drive the sustainability issue; in fact, the new process allowing to obtain directly phenol, besides avoiding the co-production of acetone (a burden for phenol, because the market requirements for the two products are quite different), might be economically convenient with respect to the conventional process, if a high selectivity to phenol were obtained. Titanium silicalite-1 (TS-1) is the catalyst chosen for this reaction. Comparing the reactivity results obtained with some TS-1 samples having different chemical-physical properties, and analyzing in detail the effect of the more important reaction parameters, we could formulate some hypothesis concerning the reaction network and mechanism. Part C of my thesis deals with the hydroxylation of phenol to hydroquinone and catechol. This reaction is already industrially applied but, for economical reason, an improvement of the selectivity to the para di-hydroxilated compound and a decrease of the selectivity to the ortho isomer would be desirable. Also in this case, the catalyst used was the TS-1. The aim of my research was to find out a method to control the selectivity ratio between the two isomers, and finally to make the industrial process more flexible, in order to adapt the process performance in function of fluctuations of the market requirements. The reaction was carried out in both a batch stirred reactor and in a re-circulating fixed-bed reactor. In the first system, the effect of various reaction parameters on catalytic behaviour was investigated: type of solvent or co-solvent, and particle size. With the second reactor type, I investigated the possibility to use a continuous system, and the catalyst shaped in extrudates (instead of powder), in order to avoid the catalyst filtration step. Finally, part D deals with the study of a new process for the valorisation of glycerol, by means of transformation into valuable chemicals. This molecule is nowadays produced in big amount, being a co-product in biodiesel synthesis; therefore, it is considered a raw material from renewable resources (a bio-platform molecule). Initially, we tested the oxidation of glycerol in the liquid-phase, with hydrogen peroxide and TS-1. However, results achieved were not satisfactory. Then we investigated the gas-phase transformation of glycerol into acrylic acid, with the intermediate formation of acrolein; the latter can be obtained by dehydration of glycerol, and then can be oxidized into acrylic acid. Actually, the oxidation step from acrolein to acrylic acid is already optimized at an industrial level; therefore, we decided to investigate in depth the first step of the process. I studied the reactivity of heterogeneous acid catalysts based on sulphated zirconia. Tests were carried out both in aerobic and anaerobic conditions, in order to investigate the effect of oxygen on the catalyst deactivation rate (one main problem usually met in glycerol dehydration). Finally, I studied the reactivity of bifunctional systems, made of Keggin-type polyoxometalates, either alone or supported over sulphated zirconia, in this way combining the acid functionality (necessary for the dehydrative step) with the redox one (necessary for the oxidative step). In conclusion, during my PhD work I investigated reactions that apply the “green chemistry” rules and strategies; in particular, I studied new greener approaches for the synthesis of chemicals (Part A and Part B), the optimisation of reaction parameters to make the oxidation process more flexible (Part C), and the use of a bioplatform molecule for the synthesis of a chemical intermediate (Part D).