5 resultados para CATALOGS

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is divided in three chapters. In the first chapter we analyse the results of the world forecasting experiment run by the Collaboratory for the Study of Earthquake Predictability (CSEP). We take the opportunity of this experiment to contribute to the definition of a more robust and reliable statistical procedure to evaluate earthquake forecasting models. We first present the models and the target earthquakes to be forecast. Then we explain the consistency and comparison tests that are used in CSEP experiments to evaluate the performance of the models. Introducing a methodology to create ensemble forecasting models, we show that models, when properly combined, are almost always better performing that any single model. In the second chapter we discuss in depth one of the basic features of PSHA: the declustering of the seismicity rates. We first introduce the Cornell-McGuire method for PSHA and we present the different motivations that stand behind the need of declustering seismic catalogs. Using a theorem of the modern probability (Le Cam's theorem) we show that the declustering is not necessary to obtain a Poissonian behaviour of the exceedances that is usually considered fundamental to transform exceedance rates in exceedance probabilities in the PSHA framework. We present a method to correct PSHA for declustering, building a more realistic PSHA. In the last chapter we explore the methods that are commonly used to take into account the epistemic uncertainty in PSHA. The most widely used method is the logic tree that stands at the basis of the most advanced seismic hazard maps. We illustrate the probabilistic structure of the logic tree, and then we show that this structure is not adequate to describe the epistemic uncertainty. We then propose a new probabilistic framework based on the ensemble modelling that properly accounts for epistemic uncertainties in PSHA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of supermassive black hole (SMBH) accretion during their phase of activity (hence becoming active galactic nuclei, AGN), and its relation to the host-galaxy growth, requires large datasets of AGN, including a significant fraction of obscured sources. X-ray data are strategic in AGN selection, because at X-ray energies the contamination from non-active galaxies is far less significant than in optical/infrared surveys, and the selection of obscured AGN, including also a fraction of heavily obscured AGN, is much more effective. In this thesis, I present the results of the Chandra COSMOS Legacy survey, a 4.6 Ms X-ray survey covering the equatorial COSMOS area. The COSMOS Legacy depth (flux limit f=2x10^(-16) erg/s/cm^(-2) in the 0.5-2 keV band) is significantly better than that of other X-ray surveys on similar area, and represents the path for surveys with future facilities, like Athena and X-ray Surveyor. The final Chandra COSMOS Legacy catalog contains 4016 point-like sources, 97% of which with redshift. 65% of the sources are optically obscured and potentially caught in the phase of main BH growth. We used the sample of 174 Chandra COSMOS Legacy at z>3 to place constraints on the BH formation scenario. We found a significant disagreement between our space density and the predictions of a physical model of AGN activation through major-merger. This suggests that in our luminosity range the BH triggering through secular accretion is likely preferred to a major-merger triggering scenario. Thanks to its large statistics, the Chandra COSMOS Legacy dataset, combined with the other multiwavelength COSMOS catalogs, will be used to answer questions related to a large number of astrophysical topics, with particular focus on the SMBH accretion in different luminosity and redshift regimes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A servo-controlled automatic machine can perform tasks that involve synchronized actuation of a significant number of servo-axes, namely one degree-of-freedom (DoF) electromechanical actuators. Each servo-axis comprises a servo-motor, a mechanical transmission and an end-effector, and is responsible for generating the desired motion profile and providing the power required to achieve the overall task. The design of a such a machine must involve a detailed study from a mechatronic viewpoint, due to its electric and mechanical nature. The first objective of this thesis is the development of an overarching electromechanical model for a servo-axis. Every loss source is taken into account, be it mechanical or electrical. The mechanical transmission is modeled by means of a sequence of lumped-parameter blocks. The electric model of the motor and the inverter takes into account winding losses, iron losses and controller switching losses. No experimental characterizations are needed to implement the electric model, since the parameters are inferred from the data available in commercial catalogs. With the global model at disposal, a second objective of this work is to perform the optimization analysis, in particular, the selection of the motor-reducer unit. The optimal transmission ratios that minimize several objective functions are found. An optimization process is carried out and repeated for each candidate motor. Then, we present a novel method where the discrete set of available motor is extended to a continuous domain, by fitting manufacturer data. The problem becomes a two-dimensional nonlinear optimization subject to nonlinear constraints, and the solution gives the optimal choice for the motor-reducer system. The presented electromechanical model, along with the implementation of optimization algorithms, forms a complete and powerful simulation tool for servo-controlled automatic machines. The tool allows for determining a wide range of electric and mechanical parameters and the behavior of the system in different operating conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radio galaxies (RGs) are extremely relevant in addressing important unknowns concerning the interaction among black hole accretion, radio jets, and the environment. In the classical scheme, their accretion rate and ejection of relativistic jets are directly linked: efficient accretion (HERG) is associated with powerful edge-brightened jets (FRIIs); inefficient accretion (LERG) is associated with weak edge-darkened jets (FRIs). The observation of RGs with an inefficient engine associated with edge-brightened radio emission (FRII-LERGs) broke this scheme. FRII-LERGs constitute a suitable population to explore how accretion and ejection are linked and evaluate the environment's role in shaping jets. To this aim, we performed a multiwavelength study of different RGs catalogs spanning from Jy to mJy flux densities. At first, we investigated the X-ray properties of a sample of 51 FRIIs belonging to the 3CR catalog at z<0.3. Two hypotheses were invoked to explain FRII-LERGs behavior: evolution from classical FRIIs; the role of the environment. Next, we explored the mJy sky by studying the optical-radio properties of hundreds of RGs at z<0.15 (Best & Heckman 2012 sample). FRII-LERGs appear more similar to the old FRI-LERGs than to the young FRII-HERGs. These results point towards an evolutive scenario, however, nuclear time scale changes, star population aging, and kpc-Mpc radio structure modification do not agree. The role of the Mpc environment was then investigated. The Wen et al. 2015 galaxy clusters sample, built exploiting the SDSS survey, allowed us to explore the habitat of 7219 RGs at z<0.3. Most RGs are found to live in outside clusters. For these sources, differences among RG classes are still present. Thus, the environment is not the key parameter, and the possibility of intrinsic differences was reconsidered: we speculated that different black hole properties (spin and magnetic field at its horizon) could determine the observed spread in jet luminosity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This Thesis explores two novel and independent cosmological probes, Cosmic Chronometers (CCs) and Gravitational Waves (GWs), to measure the expansion history of the Universe. CCs provide direct and cosmology-independent measurements of the Hubble parameter H(z) up to z∼2. In parallel, GWs provide a direct measurement of the luminosity distance without requiring additional calibration, thus yielding a direct measurement of the Hubble constant H0=H(z=0). This Thesis extends the methodologies of both of these probes to maximize their scientific yield. This is achieved by accounting for the interplay of cosmological and astrophysical parameters to derive them jointly, study possible degeneracies, and eventually minimize potential systematic effects. As a legacy value, this work also provides interesting insights into galaxy evolution and compact binary population properties. The first part presents a detailed study of intermediate-redshift passive galaxies as CCs, with a focus on the selection process and the study of their stellar population properties using specific spectral features. From their differential aging, we derive a new measurement of the Hubble parameter H(z) and thoroughly assess potential systematics. In the second part, we develop a novel methodology and pipeline to obtain joint cosmological and astrophysical population constraints using GWs in combination with galaxy catalogs. This is applied to GW170817 to obtain a measurement of H0. We then perform realistic forecasts to predict joint cosmological and astrophysical constraints from black hole binary mergers for upcoming gravitational wave observatories and galaxy surveys. Using these two probes we provide an independent reconstruction of H(z) with direct measurements of H0 from GWs and H(z) up to z∼2 from CCs and demonstrate that they can be powerful independent probes to unveil the expansion history of the Universe.