6 resultados para CAPSAICIN-INDUCED APOPTOSIS

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnesium is an essential element for many biological processes crucial for cell life and proliferation. Growing evidences point out a role for this cation in the apoptotic process and in developing multi drug resistance (MDR) phenotype. The first part of this study aimed to highlight the involvement of the mitochondrial magnesium channel MRS2 in modulating drug-induced apoptosis. We generated an appropriate transgenic cellular system to regulate expression of MRS2 protein. The cells were then exposed to two different apoptotic agents commonly used in chemotherapy. The obtained results showed that cells overexpressing MRS2 channel are less responsiveness to pharmacological insults, looking more resistant to the induced apoptosis. Moreover, in normal condition, MRS2 overexpression induces higher magnesium uptake into isolated mitochondria respect to control cells correlating with an increment of total intracellular magnesium concentration. In the second part of this research we investigated whether magnesium intracellular content and compartmentalization could be used as a signature to discriminate MDR tumour cells from their sensitive counterparts. As MDR model we choose colon carcinoma cell line sensitive and resistant to doxorubicin. We exploited a standard-less approach providing a complete characterization of whole single-cells by combining X-Ray Fluorescence Microscopy , Atomic Force Microscopy and Scanning Transmission X-ray Microscopy. This method allows the quantification of the intracellular spatial distribution and total concentration of magnesium in whole dehydrated cells. The measurements, carried out in 27 single cells, revealed a different magnesium pattern for both concentration and distribution of the element in the two cellular strains. These results were then confirmed by quantifying the total amount of intracellular magnesium in a large populations of cells by using DCHQ5 probe and traditional fluorimetric technique.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cellular response to γ-rays is mediated by ATM-p53 axis. When p53 is phosphorylated, it can transactivate several genes to induce permanent cell cycle arrest (senescence) or apoptosis. Epithelial and mesenchymal cells are more resistant to radiation-induced apoptosis and respond mainly by activating senescence. Hence, tumor cells in a senescent state might remain as “dormant” malignant in fact through disruption of p53 function, cells may overcome growth arrest. Oncocytic features were acquired in the recurring neoplasia after radiation therapy in patient with colonrectal cancer. Oncocytic tumors are characterized by aberrant biogenesis and are mainly non-aggressive neoplasms. Their low proliferation degree can be explained by chronic destabilization of HIF1α, which presides to adaptation to hypoxia and also plays a pivotal role in hypoxia-related radio-resistance. The aim of the present thesis was to verify whether mitochondrial biogenesis can be induced following radiation treatment, in relation of HIF1α status and whether is predictive of a senescence response. In this study was demonstrate that mitochondrial biogenesis parameters like mitochondrial DNA copy number could be used for the prediction of hypoxic status of tissue after radiation treatment. γ-rays induce an increase of mitochondrial mass and function, in response to a genotoxic stress that pushes cells into senescence. Mitochondrial biogenesis is only indirectly regulated by p53, whose activation triggers a MDM2-mediated HIF1α degradation, leading to the release of PGC-1β inhibition by HIF1α. On the other hand, this protein blunts the mitochondrial response to γ-rays as well as the induction of p21-mediated cell senescence, indicating prevalence of the hypoxic over the genotoxic response. Finally in vivo, post-radiotherapy mtDNA copy number increase well correlates with lack of HIF1α increase in the tissue, concluding this may be a useful molecular tool to infer the trigger of a hypoxic response during radiotherapy, which may lead to failure of activation of senescence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Clusterin (CLU) gene produces different forms of protein products which vary in their biological properties and distribution within the cell. Both the extra- and intracellular CLU forms regulate cell proliferation and apoptosis. Dis-regulation of CLU expression occurs in many cancer types, including prostate cancer. The role that CLU plays in tumorigenesis is still unclear. We found that CLU over-expression inhibited cell proliferation and induced apoptosis in prostate cancer cells. Here we show that depletion of CLU affects the growth of PC-3 prostate cancer cells. Following siRNA, all protein products quickly disappeared, inducing cell cycle progression and higher expression of specific proliferation markers (i.e. H3 mRNA, PCNA and cyclins A, B1 and D) as detected by RT-qPCR and Western blot. Quite surprisingly, we also found that the turnover of CLU protein is very rapid and tightly regulated by ubiquitin–proteasome mediated degradation. Inhibition of protein synthesis by cycloheximide showed that CLU half-life is less than 2 hours. All CLU protein products were found poly-ubiquitinated by co-immuniprecipitation. Proteasome inhibition by MG132 caused stabilization and accumulation of all CLU protein products, strongly inducing the nuclear form of CLU (nCLU) and committing cells to caspase-dependent death. In conclusion, proteasome inhibition may induce prostate cancer cell death through accumulation of nCLU, a potential tumour suppressor factor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MYCN oncogene amplification/expression is a feature of many childhood tumors, and some adult tumors, and it is associated with poor prognosis. While MYC expression is ubiquitary, MYCN has a restricted expression after birth and it is an ideal target for an effective therapy. PNAs belong to the latest class of nucleic acid-based therapeutics, and they can bind chromosomal DNA and block gene transcription (anti-gene activity). We have developed an anti-gene PNA that targets specifically the MYCN gene to block its transcription. We report for the first time MYCN targeted inhibition in Rhabdomyosarcoma (RMS) by the anti-MYCN-PNA in RMS cell lines (four ARMS and four ERMS) and in a xenograft RMS mouse model. Rhabdomyosarcoma is the most common pediatric soft-tissue sarcoma, comprising two main subgroups [Alveolar (ARMS) and Embryonal (ERMS)]. ARMS is associated with a poorer prognosis. MYCN amplification is a feature of both the ERMS and ARMS, but the MYCN amplification and expression levels shows a significant correlation and are greater in ARMS, in which they are associated with adverse outcome. We found that MYCN mRNA and protein levels were higher in the four ARMS (RH30, RH4, RH28 and RMZ-RC2) than in the four ERMS (RH36, SMS-CTR, CCA and RD) cell lines. The potent inhibition of MYCN transcription was highly specific, it did not affect the MYC expression, it was followed by cell-growth inhibition in the RMS cell lines which correlated with the MYCN expression rate, and it led to complete cell-growth inhibition in ARMS cells. We used a mutated- PNA as control. MYCN silencing induced apoptosis. Global gene expression analysis (Affymetrix microarrays) in ARMS cells treated with the anti-MYCN-PNA revealed genes specifically induced or repressed, with both genes previously described as targets of N-myc or Myc, and new genes undescribed as targets of N-myc or Myc (mainly involved in cell cycle, apoptosis, cell motility, metastasis, angiogenesis and muscle development). The changes in the expression of the most relevant genes were confirmed by Real-Time PCR and western blot, and their expression after the MYCN silencing was evaluated in the other RMS cell lines. The in vivo study, using an ARMS xenograft murine model evaluated by micro-PET, showed a complete elimination of the metabolic tumor signal in most of the cases (70%) after anti-MYCN-PNA treatment (without toxicity), whereas treatment with the mutated-PNA had no effect. Our results strongly support the development of MYCN anti-gene therapy for the treatment of RMS, particularly for poor prognosis ARMS, and of other MYCN-expressing tumors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Immunosenescence is characterized by a complex remodelling of the immune system, mainly driven by lifelong antigenic burden. Cells of the immune system are constantly exposed to a variety of stressors capable of inducing apoptosis, including antigens and reactive oxygen species continuously produced during immune response and metabolic pathways. The overall homeostasis of the immune system is based on the balance between antigenic load, oxidative stress, and apoptotic processes on one side, and the regenerative potential and renewal of the immune system on the other. Zinc is an essential trace element playing a central role on the immune function, being involved in many cellular processes, such as cell death and proliferation, as cofactor of enzymes, nuclear factors and hormones. In this context, the age associated changes in the immune system may be in part due to zinc deficiency, often observed in aged subjects and able to induce impairment of several immune functions. Thus, the aim of this work was to investigate the role of zinc in two essential events for immunity during aging, i.e. apoptosis and cell proliferation. Spontaneous and oxidative stress-induced apoptosis were evaluated by flow cytometry in presence of a physiological concentration of zinc in vitro on peripheral blood mononuclear cells (PBMCs) obtained from healthy subjects of different age: a group of young subjects, a group of old subjects and a group of nonagenarians. In addition, cell cycle phases were analyzed by flow cytometry in PBMCs, obtained from the subjects of the same groups in presence of different concentration of zinc. We also analyzed the influence of zinc in these processes in relation to p53 codon 72 polymorphism, known to affect apoptosis and cell cycle in age-dependent manner. Zinc significantly reduces spontaneous apoptosis in all age-groups; while it significantly increases oxidative stress-induced late apoptosis/necrosis in old and nonagenarians subjects. Some factors involved in the apoptotic pathway were studied and a zinc effect on mitochondrial membrane depolarization, cytochrome C release, caspase-3 activation, PARP cleavage and Bcl-2 expression was found. In conclusion, zinc inhibits spontaneous apoptosis in PBMCs contrasting the harmful effects due to the cellular culture conditions. On the other hand, zinc is able to increase toxicity and induce cell death in PBMCs from aged subjects when cells are exposed to stressing agents that compromise antioxidant cellular systems. Concerning the relationship between the susceptibility to apoptosis and p53 codon 72 genotype, zinc seems to affect apoptosis only in PBMCs from Pro- people suggesting a role of this ion in strengthening the mechanism responsible of the higher propensity of Pro- towards apoptosis. Regarding cell cycle, high doses of zinc could have a role in the progression of cells from G1 to S phase and from S to G2/M phase. These effect seems depend on the age of the donor but seems to be unrelated to p53 codon 72 genotype. In order to investigate the effect of an in vivo zinc supplementation on apoptosis and cell cycle, PBMCs from a group of aged subjects were studied before and after six weeks of oral zinc supplementation. Zinc supplementation reduces spontaneous apoptosis and it strongly reduces oxidative stress-induced apoptosis. On the contrary, no effect of zinc was observed on cell cycle. Therefore, it’s clear that in vitro and in vivo zinc supplementation have different effects on apoptosis and cell cycle in PBMCs from aged subjects. Further experiments and clinical trials are necessary to clarify the real effect of an in vivo zinc supplementation because this preliminary data could encourage the of this element in all that disease with oxidative stress pathogenesis. Moreover, the expression of metallothioneins (MTs), proteins well known for their zinc-binding ability and involved in many cellular processes, i.e. apoptosis, metal ions detoxification, oxidative stress, differentiation, was evaluated in total lymphocytes, in CD4+ and in CD8+ T lymphocytes from young and old healthy subjects in presence of different concentration of zinc in vitro. Literature data reported that during ageing the levels of these proteins increase and concomitantly they lose the ability to release zinc. This fact induce a down-regulation of many biological functions related to zinc, such as metabolism, gene expression and signal transduction. Therefore, these proteins may turn from protective in young-adult age to harmful agents for the immune function in ageing following the concept that several genes/proteins that increase fitness early in life may have negative effects later in life: named “Antagonistic Pleyotropy Theory of Ageing”. Data obtained in this work indicate an higher and faster expression of MTs with lower doses of zinc in total lymphocytes, in CD4+ and in CD8+ T lymphocytes from old subjects supporting the antagonistic pleiotropic role of these proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The β-Amyloid (βA) peptide is the major component of senile plaques that are one of the hallmarks of Alzheimer’s Disease (AD). It is well recognized that Aβ exists in multiple assembly states, such as soluble oligomers or insoluble fibrils, which affect neuronal viability and may contribute to disease progression. In particular, common βA-neurotoxic mechanisms are Ca2+ dyshomeostasis, reactive oxygen species (ROS) formation, altered signaling, mitochondrial dysfunction and neuronal death such as necrosis and apoptosis. Recent study shows that the ubiquitin-proteasome pathway play a crucial role in the degradation of short-lived and regulatory proteins that are important in a variety of basic and pathological cellular processes including apoptosis. Guanosine (Guo) is a purine nucleoside present extracellularly in brain that shows a spectrum of biological activities, both under physiological and pathological conditions. Recently it has become recognized that both neurons and glia also release guanine-based purines. However, the role of Guo in AD is still not well established. In this study, we investigated the machanism basis of neuroprotective effects of GUO against Aβ peptide-induced toxicity in neuronal (SH-SY5Y), in terms of mitochondrial dysfunction and translocation of phosphatidylserine (PS), a marker of apoptosis, using MTT and Annexin-V assay, respectively. In particular, treatment of SH-SY5Y cells with GUO (12,5-75 μM) in presence of monomeric βA25-35 (neurotoxic core of Aβ), oligomeric and fibrillar βA1-42 peptides showed a strong dose-dependent inhibitory effects on βA-induced toxic events. The maximum inhibition of mitochondrial function loss and PS translocation was observed with 75 μM of Guo. Subsequently, to investigate whether neuroprotection of Guo can be ascribed to its ability to modulate proteasome activity levels, we used lactacystin, a specific inhibitor of proteasome. We found that the antiapoptotic effects of Guo were completely abolished by lactacystin. To rule out the possibility that this effects resulted from an increase in proteasome activity by Guo, the chymotrypsin-like activity was assessed employing the fluorogenic substrate Z-LLL-AMC. The treatment of SH-SY5Y with Guo (75 μM for 0-6 h) induced a strong increase, in a time-dependent manner, of proteasome activity. In parallel, no increase of ubiquitinated protein levels was observed at similar experimental conditions adopted. We then evaluated an involvement of anti and pro-apoptotic proteins such as Bcl-2, Bad and Bax by western blot analysis. Interestingly, Bax levels decreased after 2 h treatment of SH-SY5Y with Guo. Taken together, these results demonstrate that Guo neuroprotective effects against βA-induced apoptosis are mediated, at least partly, via proteasome activation. In particular, these findings suggest a novel neuroprotective pathway mediated by Guo, which involves a rapid degradation of pro-apoptotic proteins by the proteasome. In conclusion, the present data, raise the possibility that Guo could be used as an agent for the treatment of AD.