5 resultados para CALCULI
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The aim of this thesis is to go through different approaches for proving expressiveness properties in several concurrent languages. We analyse four different calculi exploiting for each one a different technique.
We begin with the analysis of a synchronous language, we explore the expressiveness of a fragment of CCS! (a variant of Milner's CCS where replication is considered instead of recursion) w.r.t. the existence of faithful encodings (i.e. encodings that respect the behaviour of the encoded model without introducing unnecessary computations) of models of computability strictly less expressive than Turing Machines. Namely, grammars of types 1,2 and 3 in the Chomsky Hierarchy.
We then move to asynchronous languages and we study full abstraction for two Linda-like languages. Linda can be considered as the asynchronous version of CCS plus a shared memory (a multiset of elements) that is used for storing messages. After having defined a denotational semantics based on traces, we obtain fully abstract semantics for both languages by using suitable abstractions in order to identify different traces which do not correspond to different behaviours.
Since the ability of one of the two variants considered of recognising multiple occurrences of messages in the store (which accounts for an increase of expressiveness) reflects in a less complex abstraction, we then study other languages where multiplicity plays a fundamental role. We consider the language CHR (Constraint Handling Rules) a language which uses multi-headed (guarded) rules. We prove that multiple heads augment the expressive power of the language. Indeed we show that if we restrict to rules where the head contains at most n atoms we could generate a hierarchy of languages with increasing expressiveness (i.e. the CHR language allowing at most n atoms in the heads is more expressive than the language allowing at most m atoms, with m
Resumo:
The application of Concurrency Theory to Systems Biology is in its earliest stage of progress. The metaphor of cells as computing systems by Regev and Shapiro opened the employment of concurrent languages for the modelling of biological systems. Their peculiar characteristics led to the design of many bio-inspired formalisms which achieve higher faithfulness and specificity. In this thesis we present pi@, an extremely simple and conservative extension of the pi-calculus representing a keystone in this respect, thanks to its expressiveness capabilities. The pi@ calculus is obtained by the addition of polyadic synchronisation and priority to the pi-calculus, in order to achieve compartment semantics and atomicity of complex operations respectively. In its direct application to biological modelling, the stochastic variant of the calculus, Spi@, is shown able to model consistently several phenomena such as formation of molecular complexes, hierarchical subdivision of the system into compartments, inter-compartment reactions, dynamic reorganisation of compartment structure consistent with volume variation. The pivotal role of pi@ is evidenced by its capability of encoding in a compositional way several bio-inspired formalisms, so that it represents the optimal core of a framework for the analysis and implementation of bio-inspired languages. In this respect, the encodings of BioAmbients, Brane Calculi and a variant of P Systems in pi@ are formalised. The conciseness of their translation in pi@ allows their indirect comparison by means of their encodings. Furthermore it provides a ready-to-run implementation of minimal effort whose correctness is granted by the correctness of the respective encoding functions. Further important results of general validity are stated on the expressive power of priority. Several impossibility results are described, which clearly state the superior expressiveness of prioritised languages and the problems arising in the attempt of providing their parallel implementation. To this aim, a new setting in distributed computing (the last man standing problem) is singled out and exploited to prove the impossibility of providing a purely parallel implementation of priority by means of point-to-point or broadcast communication.
Resumo:
Higher-order process calculi are formalisms for concurrency in which processes can be passed around in communications. Higher-order (or process-passing) concurrency is often presented as an alternative paradigm to the first order (or name-passing) concurrency of the pi-calculus for the description of mobile systems. These calculi are inspired by, and formally close to, the lambda-calculus, whose basic computational step ---beta-reduction--- involves term instantiation. The theory of higher-order process calculi is more complex than that of first-order process calculi. This shows up in, for instance, the definition of behavioral equivalences. A long-standing approach to overcome this burden is to define encodings of higher-order processes into a first-order setting, so as to transfer the theory of the first-order paradigm to the higher-order one. While satisfactory in the case of calculi with basic (higher-order) primitives, this indirect approach falls short in the case of higher-order process calculi featuring constructs for phenomena such as, e.g., localities and dynamic system reconfiguration, which are frequent in modern distributed systems. Indeed, for higher-order process calculi involving little more than traditional process communication, encodings into some first-order language are difficult to handle or do not exist. We then observe that foundational studies for higher-order process calculi must be carried out directly on them and exploit their peculiarities. This dissertation contributes to such foundational studies for higher-order process calculi. We concentrate on two closely interwoven issues in process calculi: expressiveness and decidability. Surprisingly, these issues have been little explored in the higher-order setting. Our research is centered around a core calculus for higher-order concurrency in which only the operators strictly necessary to obtain higher-order communication are retained. We develop the basic theory of this core calculus and rely on it to study the expressive power of issues universally accepted as basic in process calculi, namely synchrony, forwarding, and polyadic communication.
Resumo:
A very recent and exciting new area of research is the application of Concurrency Theory tools to formalize and analyze biological systems and one of the most promising approach comes from the process algebras (process calculi). A process calculus is a formal language that allows to describe concurrent systems and comes with well-established techniques for quantitative and qualitative analysis. Biological systems can be regarded as concurrent systems and therefore modeled by means of process calculi. In this thesis we focus on the process calculi approach to the modeling of biological systems and investigate, mostly from a theoretical point of view, several promising bio-inspired formalisms: Brane Calculi and k-calculus family. We provide several expressiveness results mostly by means of comparisons between calculi. We provide a lower bound to the computational power of the non Turing complete MDB Brane Calculi by showing an encoding of a simple P-System into MDB. We address the issue of local implementation within the k-calculus family: whether n-way rewrites can be simulated by binary interactions only. A solution introducing divergence is provided and we prove a deterministic solution preserving the termination property is not possible. We use the symmetric leader election problem to test synchronization capabilities within the k-calculus family. Several fragments of the original k-calculus are considered and we prove an impossibility result about encoding n-way synchronization into (n-1)-way synchronization. A similar impossibility result is obtained in a pure computer science context. We introduce CCSn, an extension of CCS with multiple input prefixes and show, using the dining philosophers problem, that there is no reasonable encoding of CCS(n+1) into CCSn.
Resumo:
We introduce labelled sequent calculi for indexed modal logics. We prove that the structural rules of weakening and contraction are height-preserving admissible, that all rules are invertible, and that cut is admissible. Then we prove that each calculus introduced is sound and complete with respect to the appropriate class of transition frames.