2 resultados para C57BL mouse
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Study Objectives. The use of mouse models in sleep apnea research is limited by the belief that central (CSA) but not obstructive sleep apneas (OSA) occur in rodents. With this study we wanted to develop a protocol to look for the presence of OSAs in wild-type mice and, then, to apply it to a mouse model of Down Syndrome (DS), a human pathology characterized by a high incidence of OSAs. Methods. Nine C57Bl/6J wild-type mice were implanted with electrodes for electroencephalography (EEG), neck electromyography (nEMG), diaphragmatic activity (DIA) and then placed in a whole-body-plethysmographic (WBP) chamber for 8h during the resting (light) phase to simultaneously record sleep and breathing activity. The concomitant analysis of WBP and DIA signals allowed the discrimination between CSA and OSA. The same protocol was then applied to 12 Ts65Dn mice (a validated model of DS) and 14 euploid controls. Results. OSAs represented about half of the apneic events recorded during rapid-eye-movement sleep (REMS) in each experimental group while almost only CSAs were found during non-REMS. Ts65Dn mice had similar rate of apneic events than euploid controls but a significantly higher occurrence of OSAs during REMS. Conclusions. We demonstrated for the first time that mice physiologically exhibit both CSAs and OSAs and that the latter are more prevalent in the Ts65Dn mouse model of DS. These findings indicate that mice can be used as a valid tool to accelerate the comprehension of the pathophysiology of all kind of sleep apnea and for the development of new therapeutical approaches to contrast these respiratory disorders.
Resumo:
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease with no curative pharmacological treatment. Animal models play an essential role in revealing molecular mechanisms involved in the pathogenesis of the disease. Bleomycin (BLM)-induced lung fibrosis is the most widely used and characterized model for anti-fibrotic drugs screening. However, several issues have been reported, such as the identification of an optimal BLM dose and administration scheme as well as gender-specificity. Moreover, the balance between disease resolution, an appropriate time window for therapeutic intervention and animal welfare remains critical aspects yet to be fully elucidated. In this thesis, Micro CT imaging has been used as a tool to identify the ideal BLM dose regimen to induce sustained lung fibrosis in mice as well as to assess the anti-fibrotic effect of Nintedanib (NINT) treatment upon this BLM administration regimen. In order to select the optimal BLM dose scheme, C57bl/6 male mice were treated with BLM via oropharyngeal aspiration (OA), following either double or triple BLM administration. The triple BLM administration resulted in the most promising scheme, able to balance disease resolution, appropriate time-window for therapeutic intervention and animal welfare. The fibrosis progression was longitudinally assessed by micro-CT every 7 days for 5 weeks after BLM administration and 5 animals were sacrificed at each timepoint for the BALF and histological evaluation. The antifibrotic effect of NINT was assessed following different treatment regimens in this model. Herein, we have developed an optimized mouse model of pulmonary fibrosis, enabling three weeks of the therapeutic window to screen putative anti-fibrotic drugs. micro-CT scanning, allowed us to monitor the progression of lung fibrosis and the therapeutical response longitudinally in the same subject, drastically reducing the number of animals involved in the experiment.