4 resultados para Business intelligence, data warehouse, sql server
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In the last few years, a new generation of Business Intelligence (BI) tools called BI 2.0 has emerged to meet the new and ambitious requirements of business users. BI 2.0 not only introduces brand new topics, but in some cases it re-examines past challenges according to new perspectives depending on the market changes and needs. In this context, the term pervasive BI has gained increasing interest as an innovative and forward-looking perspective. This thesis investigates three different aspects of pervasive BI: personalization, timeliness, and integration. Personalization refers to the capacity of BI tools to customize the query result according to the user who takes advantage of it, facilitating the fruition of BI information by different type of users (e.g., front-line employees, suppliers, customers, or business partners). In this direction, the thesis proposes a model for On-Line Analytical Process (OLAP) query personalization to reduce the query result to the most relevant information for the specific user. Timeliness refers to the timely provision of business information for decision-making. In this direction, this thesis defines a new Data Warehuose (DW) methodology, Four-Wheel-Drive (4WD), that combines traditional development approaches with agile methods; the aim is to accelerate the project development and reduce the software costs, so as to decrease the number of DW project failures and favour the BI tool penetration even in small and medium companies. Integration refers to the ability of BI tools to allow users to access information anywhere it can be found, by using the device they prefer. To this end, this thesis proposes Business Intelligence Network (BIN), a peer-to-peer data warehousing architecture, where a user can formulate an OLAP query on its own system and retrieve relevant information from both its local system and the DWs of the net, preserving its autonomy and independency.
Resumo:
Electronic applications are nowadays converging under the umbrella of the cloud computing vision. The future ecosystem of information and communication technology is going to integrate clouds of portable clients and embedded devices exchanging information, through the internet layer, with processing clusters of servers, data-centers and high performance computing systems. Even thus the whole society is waiting to embrace this revolution, there is a backside of the story. Portable devices require battery to work far from the power plugs and their storage capacity does not scale as the increasing power requirement does. At the other end processing clusters, such as data-centers and server farms, are build upon the integration of thousands multiprocessors. For each of them during the last decade the technology scaling has produced a dramatic increase in power density with significant spatial and temporal variability. This leads to power and temperature hot-spots, which may cause non-uniform ageing and accelerated chip failure. Nonetheless all the heat removed from the silicon translates in high cooling costs. Moreover trend in ICT carbon footprint shows that run-time power consumption of the all spectrum of devices accounts for a significant slice of entire world carbon emissions. This thesis work embrace the full ICT ecosystem and dynamic power consumption concerns by describing a set of new and promising system levels resource management techniques to reduce the power consumption and related issues for two corner cases: Mobile Devices and High Performance Computing.
Resumo:
Big data are reshaping the way we interact with technology, thus fostering new applications to increase the safety-assessment of foods. An extraordinary amount of information is analysed using machine learning approaches aimed at detecting the existence or predicting the likelihood of future risks. Food business operators have to share the results of these analyses when applying to place on the market regulated products, whereas agri-food safety agencies (including the European Food Safety Authority) are exploring new avenues to increase the accuracy of their evaluations by processing Big data. Such an informational endowment brings with it opportunities and risks correlated to the extraction of meaningful inferences from data. However, conflicting interests and tensions among the involved entities - the industry, food safety agencies, and consumers - hinder the finding of shared methods to steer the processing of Big data in a sound, transparent and trustworthy way. A recent reform in the EU sectoral legislation, the lack of trust and the presence of a considerable number of stakeholders highlight the need of ethical contributions aimed at steering the development and the deployment of Big data applications. Moreover, Artificial Intelligence guidelines and charters published by European Union institutions and Member States have to be discussed in light of applied contexts, including the one at stake. This thesis aims to contribute to these goals by discussing what principles should be put forward when processing Big data in the context of agri-food safety-risk assessment. The research focuses on two interviewed topics - data ownership and data governance - by evaluating how the regulatory framework addresses the challenges raised by Big data analysis in these domains. The outcome of the project is a tentative Roadmap aimed to identify the principles to be observed when processing Big data in this domain and their possible implementations.
Resumo:
This thesis studies how commercial practice is developing with artificial intelligence (AI) technologies and discusses some normative concepts in EU consumer law. The author analyses the phenomenon of 'algorithmic business', which defines the increasing use of data-driven AI in marketing organisations for the optimisation of a range of consumer-related tasks. The phenomenon is orienting business-consumer relations towards some general trends that influence power and behaviors of consumers. These developments are not taking place in a legal vacuum, but against the background of a normative system aimed at maintaining fairness and balance in market transactions. The author assesses current developments in commercial practices in the context of EU consumer law, which is specifically aimed at regulating commercial practices. The analysis is critical by design and without neglecting concrete practices tries to look at the big picture. The thesis consists of nine chapters divided in three thematic parts. The first part discusses the deployment of AI in marketing organisations, a brief history, the technical foundations, and their modes of integration in business organisations. In the second part, a selected number of socio-technical developments in commercial practice are analysed. The following are addressed: the monitoring and analysis of consumers’ behaviour based on data; the personalisation of commercial offers and customer experience; the use of information on consumers’ psychology and emotions, the mediation through marketing conversational applications. The third part assesses these developments in the context of EU consumer law and of the broader policy debate concerning consumer protection in the algorithmic society. In particular, two normative concepts underlying the EU fairness standard are analysed: manipulation, as a substantive regulatory standard that limits commercial behaviours in order to protect consumers’ informed and free choices and vulnerability, as a concept of social policy that portrays people who are more exposed to marketing practices.