2 resultados para Buildup-washoff

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several coralligenous reefs occur in the soft bottoms of the northern Adriatic continental shelf. Mediterranean coralligenous habitats are characterised by high species diversity and are intrinsically valuable for their biological diversity and for the ecological processes they support. The conservation and management of these habitats require quantifying spatial and temporal variability of their benthic assemblages. This PhD thesis aims to give a relevant contribution to the knowledge of the structure and dynamics of the epibenthic assemblages on the coralligenous subtidal reefs occurring in the northern Adriatic Sea. The epibenthic assemblages showed a spatial variation larger compared to temporal changes, with a temporal persistence of reef-forming organisms. Assemblages spatial heterogeneity has been related to morphological features and geographical location of the reefs, together with variation in the hydrological conditions. Manipulative experiments help to understand the ecological processes structuring the benthic assemblages and maintaining their diversity. In this regards a short and long term experiment on colonization patterns of artificial substrata over a 3-year period has been performed in three reefs, corresponding to the three main types of assemblages detected in the previous study. The first colonisers, largely depending by the different larval supply, played a key role in determining the heterogeneity of the assemblages in the early stage of colonisation. Lateral invasion, from the surrounding assemblages, was the driver in structuring the mature assemblages. These complex colonisation dynamics explained the high heterogeneity of the assemblages dwelling on the northern Adriatic biogenic reefs. The buildup of these coralligenous reefs mainly depends by the bioconstruction-erosion processes that has been analysed through a field experiment. Bioconstruction, largely due to serpulid polychaetes, prevailed on erosion processes and occurred at similar rates in all sites. Similarly, the total energy contents in the benthic communities do not differ among sites, despite being provided by different species. Therefore, we can hypothesise that both bioconstruction processes and energetic storage may be limited by the availability of resources. Finally the major contribution of the zoobenthos compared to the phytobenthos to the total energetic content of assemblages suggests that the energy flow in these benthic habitats is primarily supported by planktonic food web trough the filter feeding invertebrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding how Active Galactic Nuclei (AGN) shape galaxy evolution is a key challenge of modern astronomy. In the framework where black hole (BH) and galaxy growth are linked, AGN feedback must be tackled both at its “causes” (e.g. AGN-driven winds) and its “effects” (alteration of the gas reservoir in AGN hosts). The most informative cosmic time is z~1-3, at the peak of AGN activity and galaxy buildup, the so-called cosmic noon. The aim of this thesis is to provide new insights regarding some key questions that still remain open in this research field: i) What are the properties of AGN-driven sub-pc scale winds at z>1? ii) Are AGN-driven winds effective in influencing the life of galaxies? iii) Do AGN impact directly on star formation (SF) and gas content of their hosts? I first address AGN feedback as “caught in the act” by studying ultra-fast outflows (UFOs), X-ray AGN-driven winds, in gravitationally lensed quasars. I build the first statistically robust sample of high-z AGN, not preselected based on AGN-driven winds. I derive a first estimate of the high-z UFO detection fraction and measure the UFO duty cycle of a single high-z quasar for the first time. I also address the “effects” of AGN feedback on the life of host galaxies. If AGN influence galaxy growth, then they will reasonably impact the molecular gas reservoir first, and SF as a consequence. Through a comparative study of the molecular gas content in cosmic-noon AGN hosts and matched non-active galaxies (i.e., galaxies not hosting an AGN), we find that the host galaxies of more regular AGN (not selected to be the most luminous) are generally similar to non-active galaxies. However, we report on the possibility of a luminosity effect regulating the efficiency by which AGN might impact on galaxy growth.