5 resultados para Building floor structures

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aims of this research were: - To identify the characteristics, properties and provenance of the building and decorative material found in three Hungarian Roman sites: Nagyharsány, Nemesvámos-Balácapuszta and Aquincum - To provide a database of information on the different sites - To have an overview of main conservation strategies applied in Hungary. Geological studies, macroscopical and microscopical observations, XRD investigations, physical and chemical analyses allowed us to define the characteristics and properties of the different kinds of collected materials. Building stones sampled from Nagyharsány site showed two different kinds of massive limestone belonging to the areas surrounding the villa. Also Building stones sampled from Nemesvámos-Balácapuszta Roman villa proved to be compatible with limestone belonging to local sources. Mural painting fragments show that all samples are units composed of multilayered structures. Mosaic tesserae can be classified as following: -Pale yellow , blackish and pink tesserae are comparable with local limestone; -White tessera, composed of marble, was probably imported from distant regions of the Empire, as the usual practice of Romans. Mortars present different characteristics according to the age, the site and the functions: -Building mortars are generally lime based, white or pale yellow in colour, present a high percentage of aggregates represented by fine sand; -Supporting mortars from both mosaics and mural paintings are reddish or pinkish in colour, due to the presence of high percentage of brick dust and tiles fragments, and present a higher content of MgO. Although the condition of the sites, there is an insignificant content of soluble salts. Database The whole study has allowed us to provide work sheets for each samples, including all characteristics and properties. Furthermore, all sites included in the frame of the research have been described and illustrated on the base of their floor plans, material and construction methodologies. It can be concluded that: 1. In Nagyharsány Archaeological site, it is possible to define a sequence of different construction phases on the base of the study of building material and mortars. The results are comparable with the chronology of the site provided by the archaeologists 2. The material used for construction was of local origin while the more precious ones, used for decorative elements, were probably imported from long distance 3. Construction techniques in Hungary mainly refer to the usual Roman knowledge and practice (Vitruvius); few differences have been found 4. The database will represent an archive for Archaeologists, Historians and Conservators dealing with Roman period in Hungary.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis reports a study on the seismic response of two-dimensional squat elements and their effect on the behavior of building structures. Part A is devoted to the study of unreinforced masonry infills, while part B is focused on reinforced concrete sandwich walls. Part A begins with a comprehensive review of modelling techniques and code provisions for infilled frame structures. Then state-of-the practice techniques are applied for a real case to test the ability of actual modeling techniques to reproduce observed behaviors. The first developments towards a seismic-resistant masonry infill system are presented. Preliminary design recommendations for the seismic design of the seismic-resistant masonry infill are finally provided. Part B is focused on the seismic behavior of a specific reinforced concrete sandwich panel system. First, the results of in-plane psuudostatic cyclic tests are described. Refinements to the conventional modified compression field theory are introduced in order to better simulate the monotonic envelope of the cyclic response. The refinements deal with the constitutive model for the shotcrete in tension and the embedded bars. Then the hysteretic response of the panels is studied according to a continuum damage model. Damage state limits are identified. Design recommendations for the seismic design of the studied reinforced concrete sandwich walls are finally provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phenol and cresols represent a good example of primary chemical building blocks of which 2.8 million tons are currently produced in Europe each year. Currently, these primary phenolic building blocks are produced by refining processes from fossil hydrocarbons: 5% of the world-wide production comes from coal (which contains 0.2% of phenols) through the distillation of the tar residue after the production of coke, while 95% of current world production of phenol is produced by the distillation and cracking of crude oil. In nature phenolic compounds are present in terrestrial higher plants and ferns in several different chemical structures while they are essentially absent in lower organisms and in animals. Biomass (which contain 3-8% of phenols) represents a substantial source of secondary chemical building blocks presently underexploited. These phenolic derivatives are currently used in tens thousand of tons to produce high cost products such as food additives and flavours (i.e. vanillin), fine chemicals (i.e. non-steroidal anti-inflammatory drugs such as ibuprofen or flurbiprofen) and polymers (i.e. poly p-vinylphenol, a photosensitive polymer for electronic and optoelectronic applications). European agrifood waste represents a low cost abundant raw material (250 millions tons per year) which does not subtract land use and processing resources from necessary sustainable food production. The class of phenolic compounds is essentially constituted by simple phenols, phenolic acids, hydroxycinnamic acid derivatives, flavonoids and lignans. As in the case of coke production, the removal of the phenolic contents from biomass upgrades also the residual biomass. Focusing on the phenolic component of agrifood wastes, huge processing and marketing opportunities open since phenols are used as chemical intermediates for a large number of applications, ranging from pharmaceuticals, agricultural chemicals, food ingredients etc. Following this approach we developed a biorefining process to recover the phenolic fraction of wheat bran based on enzymatic commercial biocatalysts in completely water based process, and polymeric resins with the aim of substituting secondary chemical building blocks with the same compounds naturally present in biomass. We characterized several industrial enzymatic product for their ability to hydrolize the different molecular features that are present in wheat bran cell walls structures, focusing on the hydrolysis of polysaccharidic chains and phenolics cross links. This industrial biocatalysts were tested on wheat bran and the optimized process allowed to liquefy up to the 60 % of the treated matter. The enzymatic treatment was also able to solubilise up to the 30 % of the alkali extractable ferulic acid. An extraction process of the phenolic fraction of the hydrolyzed wheat bran based on an adsorbtion/desorption process on styrene-polyvinyl benzene weak cation-exchange resin Amberlite IRA 95 was developed. The efficiency of the resin was tested on different model system containing ferulic acid and the adsorption and desorption working parameters optimized for the crude enzymatic hydrolyzed wheat bran. The extraction process developed had an overall yield of the 82% and allowed to obtain concentrated extracts containing up to 3000 ppm of ferulic acid. The crude enzymatic hydrolyzed wheat bran and the concentrated extract were finally used as substrate in a bioconversion process of ferulic acid into vanillin through resting cells fermentation. The bioconversion process had a yields in vanillin of 60-70% within 5-6 hours of fermentation. Our findings are the first step on the way to demonstrating the economical feasibility for the recovery of biophenols from agrifood wastes through a whole crop approach in a sustainable biorefining process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ancient pavements are composed of a variety of preparatory or foundation layers constituting the substrate, and of a layer of tesserae, pebbles or marble slabs forming the surface of the floor. In other cases, the surface consists of a mortar layer beaten and polished. The term mosaic is associated with the presence of tesserae or pebbles, while the more general term pavement is used in all the cases. As past and modern excavations of ancient pavements demonstrated, all pavements do not necessarily display the stratigraphy of the substrate described in the ancient literary sources. In fact, the number and thickness of the preparatory layers, as well as the nature and the properties of their constituent materials, are often varying in pavements which are placed either in different sites or in different buildings within a same site or even in a same building. For such a reason, an investigation that takes account of the whole structure of the pavement is important when studying the archaeological context of the site where it is placed, when designing materials to be used for its maintenance and restoration, when documenting it and when presenting it to public. Five case studies represented by archaeological sites containing floor mosaics and other kind of pavements, dated to the Hellenistic and the Roman period, have been investigated by means of in situ and laboratory analyses. The results indicated that the characteristics of the studied pavements, namely the number and the thickness of the preparatory layers, and the properties of the mortars constituting them, vary according to the ancient use of the room where the pavements are placed and to the type of surface upon which they were built. The study contributed to the understanding of the function and the technology of the pavements’ substrate and to the characterization of its constituent materials. Furthermore, the research underlined the importance of the investigation of the whole structure of the pavement, included the foundation surface, in the interpretation of the archaeological context where it is located. A series of practical applications of the results of the research, in the designing of repair mortars for pavements, in the documentation of ancient pavements in the conservation practice, and in the presentation to public in situ and in museums of ancient pavements, have been suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Chapter 1 I will present a brief introduction on the state of art of nanotechnologies, nanofabrication techniques and unconventional lithography as a technique to fabricate the novel electronic device as resistive switch so-called memristor is shown. In Chapter 2 a detailed description of the main fabrication and characterization techniques employed in this work is reported. Chapter 3 parallel local oxidation lithography (pLOx) describes as a main technique to obtain accurate patterning process. All the effective parameters has been studied and the optimized condition observed to highly reproducible with excellent patterned nanostructures. The effect of negative bias, calls local reduction (LR) studied. Moreover, the use of AC bias shows faster patterning process respect to DC bias. In Chapter 4 (metal/ e-SiO2/ Si nanojunction) it is shown how the electrochemical oxide nanostructures by using pLOx can be used in the fabrication of novel devices call memristor. We demonstrate a new concept, based on conventional materials, where the lifetime problem is resolved by introducing a “regeneration” step, which restores the nano-memristor to its pristine condition by applying an appropriate voltage cycle. In Chapter 5 (Graphene/ e-SiO2/ Si), Graphene as a building block material is used as an electrode to selectively oxidize the silicon substrate by pLOx set up for the fabrication of novel resistive switch device. In Chapter 6 (surface architecture) I will show another application of pLOx in biotechnology is shown. So the surface functionalization combine with nano-patterning by pLOx used to design a new surface to accurately bind biomolecules with the possibility of studying those properties and more application in nano-bio device fabrication. So, in order to obtain biochips, electronic and optical/photonics devices Nano patterning of DNA used as scaffolds to fabricate small functional nano-components.