5 resultados para Bubble

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wave breaking is an important coastal process, influencing hydro-morphodynamic processes such as turbulence generation and wave energy dissipation, run-up on the beach and overtopping of coastal defence structures. During breaking, waves are complex mixtures of air and water (“white water”) whose properties affect velocity and pressure fields in the vicinity of the free surface and, depending on the breaker characteristics, different mechanisms for air entrainment are usually observed. Several laboratory experiments have been performed to investigate the role of air bubbles in the wave breaking process (Chanson & Cummings, 1994, among others) and in wave loading on vertical wall (Oumeraci et al., 2001; Peregrine et al., 2006, among others), showing that the air phase is not negligible since the turbulent energy dissipation involves air-water mixture. The recent advancement of numerical models has given valuable insights in the knowledge of wave transformation and interaction with coastal structures. Among these models, some solve the RANS equations coupled with a free-surface tracking algorithm and describe velocity, pressure, turbulence and vorticity fields (Lara et al. 2006 a-b, Clementi et al., 2007). The single-phase numerical model, in which the constitutive equations are solved only for the liquid phase, neglects effects induced by air movement and trapped air bubbles in water. Numerical approximations at the free surface may induce errors in predicting breaking point and wave height and moreover, entrapped air bubbles and water splash in air are not properly represented. The aim of the present thesis is to develop a new two-phase model called COBRAS2 (stands for Cornell Breaking waves And Structures 2 phases), that is the enhancement of the single-phase code COBRAS0, originally developed at Cornell University (Lin & Liu, 1998). In the first part of the work, both fluids are considered as incompressible, while the second part will treat air compressibility modelling. The mathematical formulation and the numerical resolution of the governing equations of COBRAS2 are derived and some model-experiment comparisons are shown. In particular, validation tests are performed in order to prove model stability and accuracy. The simulation of the rising of a large air bubble in an otherwise quiescent water pool reveals the model capability to reproduce the process physics in a realistic way. Analytical solutions for stationary and internal waves are compared with corresponding numerical results, in order to test processes involving wide range of density difference. Waves induced by dam-break in different scenarios (on dry and wet beds, as well as on a ramp) are studied, focusing on the role of air as the medium in which the water wave propagates and on the numerical representation of bubble dynamics. Simulations of solitary and regular waves, characterized by both spilling and plunging breakers, are analyzed with comparisons with experimental data and other numerical model in order to investigate air influence on wave breaking mechanisms and underline model capability and accuracy. Finally, modelling of air compressibility is included in the new developed model and is validated, revealing an accurate reproduction of processes. Some preliminary tests on wave impact on vertical walls are performed: since air flow modelling allows to have a more realistic reproduction of breaking wave propagation, the dependence of wave breaker shapes and aeration characteristics on impact pressure values is studied and, on the basis of a qualitative comparison with experimental observations, the numerical simulations achieve good results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer blends constitute a valuable way to produce relatively low cost new materials. A still open question concerns the miscibility of polyethylene blends. Deviations from the log-additivity rule of the newtonian viscosity are often taken as a signature of immiscibility of the two components. The aim of this thesis is to characterize the rheological behavior in shear and elongation of five series of LLDPE/LDPE blends whose parent polymers have been chosen with different viscosity and SCB content and length. Synergistic effects have been measured for both zero shear viscosity and melt strength. Both SCB length and viscosity ratio between the components have been found to be key parameters for the miscibility of the pure polymers. In particular the miscibility increases with increasing SCB length and with decreasing the LDPE molecular weight and viscosity. This rheological behavior has significant effects on the processability window of these blends when the uni or biaxial elongational flows are involved. The film blowing is one of the processes for which the synergistic effects above mentioned can be crucial. Small scale experiments of film blowing performed for one of the series of blends has demonstrated that the positive deviation of the melt strength enlarges the processability window. In particular, the bubble stability was found to improve or disappear when the melt strength of the samples increased. The blending of LDPE and LLDPE can even reduce undesired melt flow instability phenomena widening, as a consequence, the processability window in extrusion. One of the series of blends has been characterized by means of capillary rheometry in order to allow a careful morphological analysis of the surface of the extruded polymer jets by means of Scanning Electron Microscopy (SEM) with the aim to detect the very early stages of the small scale melt instabilty at low shear rates (sharksin) and to follow its subsequent evolution as long as the shear rate was increased. With this experimental procedure it was possible to evaluate the shear rate ranges corresponding to different flow regions: smooth extrudate surface (absence of instability), sharkskin (small scale instability produced at the capillary exit), stick-slip transition (instability involving the whole capillary wall) and gross melt fracture (i.e. a large scale "upstream" instability originating from the entrance region of the capillary). A quantitative map was finally worked out using which an assessment of the flow type for a given shear rate and blend composition can be predicted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this thesis was to improve the commercial CFD software Ansys Fluent to obtain a tool able to perform accurate simulations of flow boiling in the slug flow regime. The achievement of a reliable numerical framework allows a better understanding of the bubble and flow dynamics induced by the evaporation and makes possible the prediction of the wall heat transfer trends. In order to save computational time, the flow is modeled with an axisymmetrical formulation. Vapor and liquid phases are treated as incompressible and in laminar flow. By means of a single fluid approach, the flow equations are written as for a single phase flow, but discontinuities at the interface and interfacial effects need to be accounted for and discretized properly. Ansys Fluent provides a Volume Of Fluid technique to advect the interface and to map the discontinuous fluid properties throughout the flow domain. The interfacial effects are dominant in the boiling slug flow and the accuracy of their estimation is fundamental for the reliability of the solver. Self-implemented functions, developed ad-hoc, are introduced within the numerical code to compute the surface tension force and the rates of mass and energy exchange at the interface related to the evaporation. Several validation benchmarks assess the better performances of the improved software. Various adiabatic configurations are simulated in order to test the capability of the numerical framework in modeling actual flows and the comparison with experimental results is very positive. The simulation of a single evaporating bubble underlines the dominant effect on the global heat transfer rate of the local transient heat convection in the liquid after the bubble transit. The simulation of multiple evaporating bubbles flowing in sequence shows that their mutual influence can strongly enhance the heat transfer coefficient, up to twice the single phase flow value.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gli argomenti trattati all’interno di questa tesi di dottorato riguardano la sintesi e la modifica di polimeri ottenuti a partire da fonti rinnovabili. L’acido polilattico (PLA) è stato modificato per ottenere film estensibili per uso alimentare. La scelta del materiale si è basata sull’analisi del suo ciclo di vita e perché è riconosciuto come sicuro per l’utilizzo nel campo alimentare. Le formulazioni testate, a base di PLA, sono state preparate con l’aggiunta di una serie di additivi utilizzati per migliorare le proprietà meccaniche del materiale. La lavorazione è stata eseguita mediante estrusione, ottenendo dei pellet a composizione omogenea successivamente lavorati nell’estrusore a bolla, modalità industriale di produzione dei film estensibili. È stata poi effettuata la sintesi diretta di nuovi poliesteri insaturi a base di dimetil succinato e 1,6-esandiolo. L’insaturazione della catena è stata ottenuta mediante l’uso, durante la sintesi, di derivati dell’olio di ricino, l’acido ricinoleico e il suo derivato insaturo metil undecenoato. Un’altra molecola insatura utilizzata è stata il citronellolo, scelto tra i terpeni. I polimeri così ottenuti sono stati modificati tramite reazioni radicaliche indotte con radiazioni UV utilizzando sostanze antibatteriche (sale 3-esadecil-1-vinilimidazolo bromuro) al fine di ottenere materiali con attività biocida a lungo termine e senza rilascio. Si è proceduto inoltre alla polimerizzazione reversibile di monomeri furanici con oli vegetali utilizzando una strategia di tipo double click. Si è partiti dalla sintesi di monomeri derivanti da oli vegetali contenenti eterocicli furanici attaccati mediante addizione tiol-enica (prima reazione click chemistry) e si è proseguito con la loro successiva polimerizzazione attraverso una reazione di tipo Diels-Alder con molecole con gruppi maleimmidici (seconda reazione click chemistry). I polimeri così ottenuti sono materiali potenzialmente auto-riparanti, grazie alla possibilità di spostare l’equilibrio verso i prodotti o i reagenti semplicemente variando le condizioni di temperatura.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theories and numerical modeling are fundamental tools for understanding, optimizing and designing present and future laser-plasma accelerators (LPAs). Laser evolution and plasma wave excitation in a LPA driven by a weakly relativistically intense, short-pulse laser propagating in a preformed parabolic plasma channel, is studied analytically in 3D including the effects of pulse steepening and energy depletion. At higher laser intensities, the process of electron self-injection in the nonlinear bubble wake regime is studied by means of fully self-consistent Particle-in-Cell simulations. Considering a non-evolving laser driver propagating with a prescribed velocity, the geometrical properties of the non-evolving bubble wake are studied. For a range of parameters of interest for laser plasma acceleration, The dependence of the threshold for self-injection in the non-evolving wake on laser intensity and wake velocity is characterized. Due to the nonlinear and complex nature of the Physics involved, computationally challenging numerical simulations are required to model laser-plasma accelerators operating at relativistic laser intensities. The numerical and computational optimizations, that combined in the codes INF&RNO and INF&RNO/quasi-static give the possibility to accurately model multi-GeV laser wakefield acceleration stages with present supercomputing architectures, are discussed. The PIC code jasmine, capable of efficiently running laser-plasma simulations on Graphics Processing Units (GPUs) clusters, is presented. GPUs deliver exceptional performance to PIC codes, but the core algorithms had to be redesigned for satisfying the constraints imposed by the intrinsic parallelism of the architecture. The simulation campaigns, run with the code jasmine for modeling the recent LPA experiments with the INFN-FLAME and CNR-ILIL laser systems, are also presented.