2 resultados para Broadband networks

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The need for high bandwidth, due to the explosion of new multi\-media-oriented IP-based services, as well as increasing broadband access requirements is leading to the need of flexible and highly reconfigurable optical networks. While transmission bandwidth does not represent a limit due to the huge bandwidth provided by optical fibers and Dense Wavelength Division Multiplexing (DWDM) technology, the electronic switching nodes in the core of the network represent the bottleneck in terms of speed and capacity for the overall network. For this reason DWDM technology must be exploited not only for data transport but also for switching operations. In this Ph.D. thesis solutions for photonic packet switches, a flexible alternative with respect to circuit-switched optical networks are proposed. In particular solutions based on devices and components that are expected to mature in the near future are proposed, with the aim to limit the employment of complex components. The work presented here is the result of part of the research activities performed by the Networks Research Group at the Department of Electronics, Computer Science and Systems (DEIS) of the University of Bologna, Italy. In particular, the work on optical packet switching has been carried on within three relevant research projects: the e-Photon/ONe and e-Photon/ONe+ projects, funded by the European Union in the Sixth Framework Programme, and the national project OSATE funded by the Italian Ministry of Education, University and Scientific Research. The rest of the work is organized as follows. Chapter 1 gives a brief introduction to network context and contention resolution in photonic packet switches. Chapter 2 presents different strategies for contention resolution in wavelength domain. Chapter 3 illustrates a possible implementation of one of the schemes proposed in chapter 2. Then, chapter 4 presents multi-fiber switches, which employ jointly wavelength and space domains to solve contention. Chapter 5 shows buffered switches, to solve contention in time domain besides wavelength domain. Finally chapter 6 presents a cost model to compare different switch architectures in terms of cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This doctoral dissertation aims to establish fiber-optic technologies overcoming the limiting issues of data communications in indoor environments. Specific applications are broadband mobile distribution in different in-building scenarios and high-speed digital transmission over short-range wired optical systems. Two key enabling technologies are considered: Radio over Fiber (RoF) techniques over standard silica fibers for distributed antenna systems (DAS) and plastic optical fibers (POFs) for short-range communications. Hence, the objectives and achievements of this thesis are related to the application of RoF and POF technologies in different in-building scenarios. On one hand, a theoretical and experimental analysis combined with demonstration activities has been performed on cost-effective RoF systems. An extensive modeling on modal noise impact both on linear and non-linear characteristics of RoF link over silica multimode fiber has been performed to achieve link design rules for an optimum choice of the transmitter, receiver and launching technique. A successful transmission of Long Term Evolution (LTE) mobile signals on the resulting optimized RoF system over silica multimode fiber employing a Fabry-Perot LD, central launch technique and a photodiode with a built-in ball lens was demonstrated up to 525m with performances well compliant with standard requirements. On the other hand, digital signal processing techniques to overcome the bandwidth limitation of POF have been investigated. An uncoded net bit-rate of 5.15Gbit/s was obtained on a 50m long POF link employing an eye-safe transmitter, a silicon photodiode, and DMT modulation with bit and power loading algorithm. With the insertion of 3x2N quadrature amplitude modulation constellation formats, an uncoded net-bit-rate of 5.4Gbit/s was obtained on a 50 m long POF link employing an eye-safe transmitter and a silicon avalanche photodiode. Moreover, simultaneous transmission of baseband 2Gbit/s with DMT and 200Mbit/s with an ultra-wideband radio signal has been validated over a 50m long POF link.