3 resultados para Brca2
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Different kinds of lesions can occur to DNA, and among them, one of the most dangerous is the double strand breaks (DSBs). Actually, DSBs can result in mutations, chromosome translocation or deletion. For this kind of lesions, depending on cell cycle phase as well as DNA-end resection, cells have developed specific repair pathways. Among these the error-free homologous recombination (HR) plays a crucial role. HR takes place during S/G2 phases, since the sister chromatids can be used as homologous templates. In this process, hRAD51 and BRCA2 are key players. hRAD51 is a recombinase of 339 amino-acids highly conserved through evolution which displays an intrinsic tendency to form oligomeric structures. BRCA2 is a very large protein of 3418 amino-acids, essential for the recruitment and accumulation of hRAD51 in the nucleus repairing-foci. BRCA2 interacts with hRAD51 through eight, so-called, BRC repeats, composed of 35-40 amino-acids. Mutations within this region have been linked to an increased risk of ovarian cancer development. In particular, several reports highlighted that missense mutations within one BRC repeat can hamper BRCA2 activity. Considering the close homology between the BRC repeats, it is striking how these mutations cannot be counterbalanced by the other non-mutated repeats preserving the function and the interactions of BRCA2 with hRAD51. To date the only interaction that has been structurally elucidated, is the one taking place amid the fourth BRC repeat and hRAD51. Only very little biophysical information is available on the interaction of the other BRC repeats with hRAD51. This thesis aims at elucidating the mechanism of hRAD51-BRCA2 interaction, by means of biophysical and structural approaches.
Resumo:
Synthetic lethality represents an anticancer strategy that targets tumor specific gene defects. One of the most studied application is the use of PARP inhibitors (e.g. olaparib) in BRCA1/2-less cancer cells. In BRCA2-defective tumors, olaparib (OLA) inhibits DNA single-strand break repair, while BRCA2 mutations hamper homologous recombination (HR) repair. The simultaneous impairment of those pathways leads BRCA-less cells to death by synthetic lethality. The projects described in this thesis were aimed at extending the use of OLA in cancer cells that do not carry a mutation in BRCA2 by combining this drug with compounds that could mimic a BRCA-less environment via HR inhibition. We demonstrated the effectiveness of our “fully small-molecule induced synthetic lethality” by using two different approaches. In the direct approach (Project A), we identified a series of neo-synthesized compounds (named RAD51-BRCA2 disruptors) that mimic BRCA2 mutations by disrupting the RAD51-BRCA2 interaction and thus the HR pathway. Compound ARN 24089 inhibited HR in human pancreatic adenocarcinoma cell line and triggered synthetic lethality by synergizing with OLA. Interestingly, the observed synthetic lethality was triggered by tackling two biochemically different mechanisms: enzyme inhibition (PARP) and protein-protein disruption (RAD51-BRCA2). In the indirect approach (Project B), we inhibited HR by interfering with the cellular metabolism through inhibition of LDH activity. The obtained data suggest an LDH-mediated control on HR that can be exerted by regulating either the energy supply needed to this repair mechanism or the expression level of genes involved in DNA repair. LDH inhibition also succeeded in increasing the efficiency of OLA in BRCA-proficient cell lines. Although preliminary, these results highlight a complex relationship between metabolic reactions and the control of DNA integrity. Both the described projects proved that our “fully small-molecule-induced synthetic lethality” approach could be an innovative approach to unmet oncological needs.
Resumo:
BRCA1 and BRCA2 are the most frequently mutated genes in ovarian cancer (OC), crucial both for the identification of cancer predisposition and therapeutic choices. However, germline variants in other genes could be involved in OC susceptibility. We characterized OC patients to detect mutations in genes other than BRCA1/2 that could be associated with a high risk to develop OC, and that could permit patients to enter the most appropriate treatment and surveillance program. Next-Generation Sequencing analysis with a 94-gene panel was performed on germline DNA of 219 OC patients. We identified 34 pathogenic/likely-pathogenic variants in BRCA1/2 and 38 in other 21 genes. Patients with pathogenic/likely-pathogenic variants in non-BRCA1/2 genes developed mainly OC alone compared to the other groups that developed also breast cancer or other tumors (p=0.001). Clinical correlation analysis showed that low-risk patients were significantly associated with platinum sensitivity (p<0.001). Regarding PARP inhibitors (PARPi) response, patients with pathogenic mutations in non-BRCA1/2 genes had significantly worse PFS and OS. Moreover, a statistically significant worse PFS was found for every increase of one thousand platelets before PARPi treatment. To conclude, knowledge about molecular alterations in genes beyond BRCA1/2 in OC could allow for more personalized diagnostic, predictive, prognostic, and therapeutic strategies for OC patients.