3 resultados para Brain Stem Neoplasms
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
AGC1 deficiency is a rare demyelinating disease caused by mutations in the SLC25A12 gene, which encodes for the mitochondrial glutamate-aspartate carrier 1 (AGC1/Alarar), highly expressed in the central nervous system. In neurons, impairment in AGC1 activity leads to reduction in N-acetyl-aspartate, the main lipid precursor for myelin synthesis (Profilo et al., 2017); in oligodendrocytes progenitors cells, AGC1 down regulation has been related to early arrest proliferation and premature differentiation (Petralla et al., 2019). Additionally, in vivo AGC1 deficiency models i.e., heterozygous mice for AGC1 knock-out and neurospheres from their subventricular zone, respectively, showed a global decrease in cells proliferation and a switch in neural stem cells (NSCs) commitment, with specific reduction in OPCs number and increase in neural and astrocytic pools (Petralla et al., 2019). Therefore, the present study aims to investigate the transcriptional and epigenetic regulation underlying the alterations observed in OPCs and NSCs biological mechanisms, in either AGC1 deficiency models of Oli-neu cells (murine immortalized oligodendrocytes precursors cells), partially silenced by a shRNA for SLC25A12 gene, and SVZ-derived neurospheres from AGC1+/- mice. Western blot and immunofluorescence analysis revealed significant variations in the expression of transcription factors involved in brain cells’ proliferation and differentiation, in association with altered histone post-translational modifications, as well as histone acetylases (HATs) and deacetylases (HDACs) activity/expression, suggesting an improper transcriptional and epigenetic regulation affecting both AGC1 deficiency in vitro models. Furthermore, given the large role of acetylation in controlling in specific time-windows OPC maturation (Hernandez and Casaccia; 2015), pharmacological HATs/HDACs inhibitions were performed, confirming the involvement of chromatin remodelling enzymes in the altered proliferation and early differentiation observed in the AGC1 deficiency models of siAGC1 Oli-neu cells and AGC1+/- mice-derived neurospheres.
Resumo:
Primary glioblastoma (GB), the most common and aggressive adult brain tumour, is refractory to conventional therapies and characterised by poor prognosis. GB displays striking cellular heterogeneity, with a sub-population, called Glioblastoma Stem Cells (GSCs), intrinsically resistant to therapy, hence the high rate of recurrence. Alterations of the tumour suppressor gene PTEN are prevalent in primary GBM, resulting in the inhibition of the polarity protein Lgl1 due to aPKC hyperactivation. Dysregulation of this molecular axis is one of the mechanisms involved in GSC maintenance. After demonstrating that the PTEN/aPKC/Lgl axis is conserved in Drosophila, I deregulated it in different cells populations of the nervous system in order to individuate the cells at the root of neurogenic brain cancers. This analysis identified the type II neuroblasts (NBs) as the most sensitive to alterations of this molecular axis. Type II NBs are a sub-population of Drosophila stem cells displaying a lineage similar to that of the mammalian neural stem cells. Following aPKC activation in these stem cells, I obtained an adult brain cancer model in Drosophila that summarises many phenotypic traits of human brain tumours. Fly tumours are indeed characterised by accumulation of highly proliferative immature cells and keep growing in the adult leading the affected animals to premature death. With the aim to understand the role of cell polarity disruption in this tumorigenic process I carried out a molecular characterisation and transcriptome analysis of brain cancers from our fly model. In summary, the model I built and partially characterised in this thesis work may help deepen our knowledge on human brain cancers by investigating many different aspects of this complicate disease.
Resumo:
Classical myeloproliferative neoplasms (MPNs) are hematopoietic stem cell disorders that manifest with inflammation, promotion of atherosclerosis, hypercoagulability, fibrosis, and clonal evolution. The complex biological background lends itself to multi-omics studies. We have previously shown that reduced platelet fibrinogen receptor (PFR) expression may follow hyperactivation of plasma-dependent mechanisms, such as tissue factor (TF) release, unbalanced thrombin generation, involvement of protease-activated receptors (PARs). Acetylsalicylic acid (ASA) helped to restore the expression of PFRs. In this study, we enrolled 53 MPN patients, subjecting them to advanced genetic testing (panel of 30 genes in NGS), global coagulation testing (Rotational Thromboelastometry - ROTEM) and cytofluorometric determination of PFRs. ROTEM parameters appear to differ considerably depending on the type of pathology under investigation, cell count, and selected mutations. Essential thrombocythemia (ET) and CALR mutation appear to correlate with increased efficiency of both classical coagulation pathways, with significantly more contracted clot formation times (CFTs). In contrast, primary myelofibrosis (PMF) and polycythemia vera (PV) show greater imbalances in the hemostatic system. PV, probably due to its peculiar hematological features, shows a lengthening of the CFT and, at the same time, a selective contraction of parameters in INTEM with the increase of platelets and white blood cells. PMF - in contrast - seems to exploit the extrinsic pathway more to increase cell numbers. The presence of DNMT3A mutations is associated with reduced clotting time (CT) in EXTEM, while ASXL1 causes reduced maximal lysis (ML). EZH2 could be responsible for the elongation of CFT in INTEM assay. In addition, increased PFR expression is associated with history of hemorrhage and sustained CT time in FIBTEM under ASA prophylaxis. Our findings corroborate the existing models on the connection between fibrosis, genetic complexity, clonal progression, and hypercoagulability. Global coagulation assays and PFR expression are potentially useful tools for dynamic evaluation of treatments’ outcomes.