11 resultados para Bouguer Anomaly
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The present work consists of the investigation of the navigation of Pioneer 10 and 11 probes becoming known as the “Pioneer Anomaly”: the trajectories followed by the spacecrafts did not match the ones retrieved with standard navigation software. Mismatching appeared as a linear drift in the Doppler data received by the spacecrafts, which has been ascribed to a constant sunward acceleration of about 8.5×10-10 m/s2. The study presented hereafter tries to find a convincing explanation to this discrepancy. The research is based on the analysis of Doppler tracking data through the ODP (Orbit Determination Program), developed by NASA/JPL. The method can be summarized as: seek for any kind of physics affecting the dynamics of the spacecraft or the propagation of radiometric data, which may have not been properly taken into account previously, and check whether or not these might rule out the anomaly. A major effort has been put to build a thermal model of the spacecrafts for predicting the force due to anisotropic thermal radiation, since this is a model not natively included in the ODP. Tracking data encompassing more than twenty years of Pioneer 10 interplanetary cruise, plus twelve years of Pioneer 11 have been analyzed in light of the results of the thermal model. Different strategies of orbit determination have been implemented, including single arc, multi arc and stochastic filters, and their performance compared. Orbital solutions have been obtained without the needing of any acceleration other than the thermal recoil one indicating it as the responsible for the observed linear drift in the Doppler residuals. As a further support to this we checked that inclusion of additional constant acceleration as does not improve the quality of orbital solutions. All the tests performed lead to the conclusion that no anomalous acceleration is acting on Pioneers spacecrafts.
Resumo:
The Cherenkov Telescope Array (CTA) will be the next-generation ground-based observatory to study the universe in the very-high-energy domain. The observatory will rely on a Science Alert Generation (SAG) system to analyze the real-time data from the telescopes and generate science alerts. The SAG system will play a crucial role in the search and follow-up of transients from external alerts, enabling multi-wavelength and multi-messenger collaborations. It will maximize the potential for the detection of the rarest phenomena, such as gamma-ray bursts (GRBs), which are the science case for this study. This study presents an anomaly detection method based on deep learning for detecting gamma-ray burst events in real-time. The performance of the proposed method is evaluated and compared against the Li&Ma standard technique in two use cases of serendipitous discoveries and follow-up observations, using short exposure times. The method shows promising results in detecting GRBs and is flexible enough to allow real-time search for transient events on multiple time scales. The method does not assume background nor source models and doe not require a minimum number of photon counts to perform analysis, making it well-suited for real-time analysis. Future improvements involve further tests, relaxing some of the assumptions made in this study as well as post-trials correction of the detection significance. Moreover, the ability to detect other transient classes in different scenarios must be investigated for completeness. The system can be integrated within the SAG system of CTA and deployed on the onsite computing clusters. This would provide valuable insights into the method's performance in a real-world setting and be another valuable tool for discovering new transient events in real-time. Overall, this study makes a significant contribution to the field of astrophysics by demonstrating the effectiveness of deep learning-based anomaly detection techniques for real-time source detection in gamma-ray astronomy.
Resumo:
High-frequency seismograms contain features that reflect the random inhomogeneities of the earth. In this work I use an imaging method to locate the high contrast small- scale heterogeneity respect to the background earth medium. This method was first introduced by Nishigami (1991) and than applied to different volcanic and tectonically active areas (Nishigami, 1997, Nishigami, 2000, Nishigami, 2006). The scattering imaging method is applied to two volcanic areas: Campi Flegrei and Mt. Vesuvius. Volcanic and seismological active areas are often characterized by complex velocity structures, due to the presence of rocks with different elastic properties. I introduce some modifications to the original method in order to make it suitable for small and highly complex media. In particular, for very complex media the single scattering approximation assumed by Nishigami (1991) is not applicable as the mean free path becomes short. The multiple scattering or diffusive approximation become closer to the reality. In this thesis, differently from the ordinary Nishigami’s method (Nishigami, 1991), I use the mean of the recorded coda envelope as reference curve and calculate the variations from this average envelope. In this way I implicitly do not assume any particular scattering regime for the "average" scattered radiation, whereas I consider the variations as due to waves that are singularly scattered from the strongest heterogeneities. The imaging method is applied to a relatively small area (20 x 20 km), this choice being justified by the small length of the analyzed codas of the low magnitude earthquakes. I apply the unmodified Nishigami’s method to the volcanic area of Campi Flegrei and compare the results with the other tomographies done in the same area. The scattering images, obtained with frequency waves around 18 Hz, show the presence of high scatterers in correspondence with the submerged caldera rim in the southern part of the Pozzuoli bay. Strong scattering is also found below the Solfatara crater, characterized by the presence of densely fractured, fluid-filled rocks and by a strong thermal anomaly. The modified Nishigami’s technique is applied to the Mt. Vesuvius area. Results show a low scattering area just below the central cone and a high scattering area around it. The high scattering zone seems to be due to the contrast between the high rigidity body located beneath the crater and the low rigidity materials located around it. The central low scattering area overlaps the hydrothermal reservoirs located below the central cone. An interpretation of the results in terms of geological properties of the medium is also supplied, aiming to find a correspondence of the scattering properties and the geological nature of the material. A complementary result reported in this thesis is that the strong heterogeneity of the volcanic medium create a phenomenon called "coda localization". It has been verified that the shape of the seismograms recorded from the stations located at the top of the volcanic edifice of Mt. Vesuvius is different from the shape of the seismograms recorded at the bottom. This behavior is justified by the consideration that the coda energy is not uniformly distributed within a region surrounding the source for great lapse time.
Resumo:
The theory of the 3D multipole probability tomography method (3D GPT) to image source poles, dipoles, quadrupoles and octopoles, of a geophysical vector or scalar field dataset is developed. A geophysical dataset is assumed to be the response of an aggregation of poles, dipoles, quadrupoles and octopoles. These physical sources are used to reconstruct without a priori assumptions the most probable position and shape of the true geophysical buried sources, by determining the location of their centres and critical points of their boundaries, as corners, wedges and vertices. This theory, then, is adapted to the geoelectrical, gravity and self potential methods. A few synthetic examples using simple geometries and three field examples are discussed in order to demonstrate the notably enhanced resolution power of the new approach. At first, the application to a field example related to a dipole–dipole geoelectrical survey carried out in the archaeological park of Pompei is presented. The survey was finalised to recognize remains of the ancient Roman urban network including roads, squares and buildings, which were buried under the thick pyroclastic cover fallen during the 79 AD Vesuvius eruption. The revealed anomaly structures are ascribed to wellpreserved remnants of some aligned walls of Roman edifices, buried and partially destroyed by the 79 AD Vesuvius pyroclastic fall. Then, a field example related to a gravity survey carried out in the volcanic area of Mount Etna (Sicily, Italy) is presented, aimed at imaging as accurately as possible the differential mass density structure within the first few km of depth inside the volcanic apparatus. An assemblage of vertical prismatic blocks appears to be the most probable gravity model of the Etna apparatus within the first 5 km of depth below sea level. Finally, an experimental SP dataset collected in the Mt. Somma-Vesuvius volcanic district (Naples, Italy) is elaborated in order to define location and shape of the sources of two SP anomalies of opposite sign detected in the northwestern sector of the surveyed area. The modelled sources are interpreted as the polarization state induced by an intense hydrothermal convective flow mechanism within the volcanic apparatus, from the free surface down to about 3 km of depth b.s.l..
Resumo:
OBJECTIVE: One major problem in counselling couples with a prenatal diagnosis of a correctable fetal anomaly is the ability to exclude associated malformations that may modify the prognosis. Our aim was to assess the precision of fetal sonography in identifying isolated malformations. METHODS: We retrospectively reviewed the prenatal and postnatal records of our center for cases with a prenatal diagnosis of an isolated fetal anomaly in the period 2002-2007. RESULTS: The antenatal diagnosis of an isolated malformation was made in 284 cases. In one of this cases the anomaly disappeared in utero. Of the remaining cases, the prenatal diagnosis was confirmed after birth in 251 (88.7%). In 8 fetuses (7 with a suspected coarctation of the aorta, 1 with ventricular septal defect) the prenatal diagnosis was not confirmed. In 24 fetuses (8.5%) additional malformations were detected at postnatal or post-mortem. In 16 of these cases the anomalies were mild or would not have changed the prognosis. In 8 cases (2.8%) severe anomalies were present (1 hypoplasia of the corpus callosum with ventriculomegaly, 1 tracheal agenesis, 3 cases with multiple anomalies, 1 Opitz Syndrome, 1 with CHARGE Syndrome, 1 COFS Syndrome). Two of these infants died. CONCLUSIONS: the prenatal diagnosis of an isolated fetal anomaly is highly reliable. However, the probability that additional malformations will go undetected albeit small remains tangible. In our experience, it was 2.8%.
Resumo:
Introduction: In the last years cardiac surgery for congenital heart disease (CHD) reduced dramatically mortality modifying prognosis, but, at the same time, increased morbidity in this patient population. Respiratory and cardiovascular systems are strictly anatomically and functionally connected, so that alterations of pulmonary hemodynamic conditions modify respiratory function. While very short-term alterations of respiratory mechanics after surgery were investigated by many authors, not as much works focused on long-term changes. In these subjects rest respiratory function may be limited by several factor: CHD itself (fetal pulmonary perfusion influences vascular and alveolar development), extracorporeal circulation (CEC), thoracotomy and/or sternotomy, rib and sternal contusions, pleural adhesions and pleural fibrosis, secondary to surgical injury. Moreover inflammatory cascade, triggered by CEC, can cause endothelial damage and compromise gas exchange. Aims: The project was conceived to 1) determine severity of respiratory functional impairement in different CHD undergone to surgical correction/palliation; 2) identify the most and the least CHD involved by pulmonary impairement; 3) find a correlation between a specific hemodynamic condition and functional anomaly, and 4) between rest respiratory function and cardiopulmonary exercise test. Materials and methods: We studied 113 subjects with CHD undergone to surgery, and distinguished by group in accord to pulmonary blood flow (group 0: 28 pts with normal pulmonary flow; group 1: 22 pts with increased flow; group 2: 43 pts with decreased flow; group 3: 20 pts with total cavo-pulmonary anastomosis-TCPC) followed by the Pediatric Cardiology and Cardiac Surgery Unit, and we compare them to 37 age- and sex-matched healthy subjects. In Pediatric Pulmonology Unit all pts performed respiratory function tests (static and dynamic volumes, flow/volume curve, airway resistances-raw- and conductance-gaw-, lung diffusion of CO-DLCO- and DLCO/alveolar volume), and CHD pts the same day had cardiopulmonary test. They all were examined and had allergological tests, and respiratory medical history. Results: restrictive pattern (measured on total lung capacity-TLC- and vital capacity-VC) was in all CHD groups, and up to 45% in group 2 and 3. Comparing all groups, we found a significant difference in TLC between healthy and group 2 (p=0.001) and 3 (p=0.004), and in VC between group 2 and healthy (p=0.001) and group 1(p=0.034). Inspiratory capacity (IC) was decreased in group 2 related to healthy (p<0.001) and group 1 (p=0.037). We showed a direct correlation between TLC and VC with age at surgery (p=0.01) and inverse with number of surgical interventions (p=0.03). Reduced FEV1/FVC ratio, Gaw and increased Raw were mostly present in group 3. DLCO was impaired in all groups, but up to 80% in group 3 and 50% in group 2; when corrected for alveolar volume (DLCO/VA) reduction persisted in group 3 (20%), 2 (6.2%) and 0 (7.1%). Exercise test was impaired in all groups: VO2max and VE markedly reduced in all but especially in group 3, and VE/VCO2 slope, marker of ventilatory response to exercise, is increased (<36) in 62.5% of group 3, where other pts had anyway value>32. Comparing group 3 and 2, the most involved categories, we found difference in VO2max and VE/VCO2 slope (respectively p=0.02 and p<0.0001). We evidenced correlation between rest and exercise tests, especially in group 0 (between VO2max and FVC, FEV1, VC, IC; inverse relation between VE/VCO2slope and FVC, FEV1 and VC), but also in group 1 (VO2max and IC), group 2 (VO2max and FVC and FEV1); never in group 3. Discussion: According with literature, we found a frequent impairment of rest pulmonary function in all groups, but especially in group 2 and 3. Restrictive pattern was the most frequent alteration probably due to compromised pulmonary (vascular and alveolar) development secondary to hypoperfusion in fetal and pre-surgery (and pre-TCPC)life. Parenchymal fibrosis, pleural adhesions and thoracic deformities can add further limitation, as showed by the correlation between group 3 and number of surgical intervention. Exercise tests were limited, particularly in group 3 (complex anatomy and lost of chronotropic response), and we found correlations between rest and exercise tests in all but group 3. We speculate that in this patients hemodynamic exceeds respiratory contribution, though markedly decreased.
Resumo:
The Southern Tyrrhenian subduction system shows a complex interaction among asthenospheric flow, subducting slab and overriding plate. To shed light on the deformations and mechanical properties of the slab and surrounding mantle, I investigated seismic anisotropy and attenuation properties through the subduction region. I used both teleseisms and slab earthquakes, analyzing shear-wave splitting on SKS and S phases, respectively. The fast polarization directions φ, and the delay time, δt, were retrieved using the method of Silver and Chan [1991. SKS and S φ reveal a complex anisotropy pattern across the subduction zone. SKS-rays sample primarily the sub-slab region showing rotation of fast directions following the curved shape of the slab and very strong anisotropy. S-rays sample mainly the slab, showing variable φ and a smaller δt. SKS and S splitting reveals a well developed toroidal flow at SW edge of the slab, while at its NE edge the pattern is not very clear. This suggests that the anisotropy is controlled by the slab rollback, responsible for about 100 km slab parallel φ in the sub-slab mantle. The slab is weakly anisotropic, suggesting the asthenosphere as main source of anisotropy. To investigate the physical properties of the slab and surrounding regions, I analyzed the seismic P and S wave attenuation. By inverting high-quality S-waves t* from slab earthquakes, 3D attenuation models down to 300 km were obtained. Attenuation results image the slab as low-attenuation body, but with heterogeneous QS and QP structure showing spot of high attenuation , between 100-200 km depth, which could be due dehydration associated to the slab metamorphism. A low QS anomaly is present in the mantle wedge beneath the Aeolian volcanic arc and could indicate mantle melting and slab dehydration.
Resumo:
The main goal of the present thesis was to study some harmful algal species which cause blooms in Italian coastal waters, leading to consequences for human health, coastal ecosystem, fishery and tourism. In particular, in the first part of this thesis the toxicity of Adriatic strains of the raphidophyte Fibrocapsa japonica was investigated. Despite several hypotheses have been proposed for the toxic mechanism of the raphidophytes, especially for the species Chattonella antiqua and C. marina, which have been studied more extensively, just a few studies on the toxic effects of these species for different organisms were reported. Moreover, a careful reading of the literature evidenced as any ichthyotoxic events reported worldwide can be linked to F. japonica blooms. Although recently several studies were performed on F. japonica strains from the USA, Japan, Australia, New Zealand, the Netherlands, Germany, and France in order to characterize their growth and toxicity features, the work reported in this thesis results one of the first investigation on the toxic effects of F. japonica for different organisms, such as bacteria, crustaceans and fish. Mortality effects, together with haemolysis of fish erythrocytes, probably due to the relatively high amount of PUFAs produced by this species, were observed. Mortality for fish, however, was reported only at a high cell density and after a long exposition period (9-10 days); moreover a significant increase of H2O2 obtained in the tanks where sea basses were exposed to F. japonica was also relevant. This result may justify the absence of ichthyotoxic events in the Italian coasts, despite F. japonica blooms detected in these areas were characterized by high cell densities. This work reports also a first complete characterization of the fatty acids produced and extracellularly released by the Adriatic F. japonica, and results were also compared with the fatty acid profile of other strains. The absence of known brevetoxins in F. japonica algal extracts was also highlighted, leading to the hypothesis that the toxicity of F. japonica may be due to a synergic effect of PUFAs and ROS. Another microalgae that was studied in this thesis is the benthic dinoflagellate Ostreopsis cf. ovata. This species was investigated with the aim to investigate the effect of environmental parameters on its growth and toxicity. O. cf. ovata, in fact, shows different blooming periods along the Italian coasts and even the reported toxic effects are variable. The results of this work confirmed the high variability in the growth dynamic and toxin content of several Italian strains which were isolated in recent years along the Adriatic and Tyrrhenian Seas. Moreover, the effects of temperature and salinity on the behaviour of the different isolates are in good agreement with the results obtained from field surveys, which evidence as the environmental parameters are important factors modulating O. cf. ovata proliferation. Another relevant result that was highlighted is the anomaly in the production of palytoxin-like compounds reported by one of the studied isolate, in particular the one isolated in 2008 in Ancona (Adriatic Sea). Only this strain reported the absence of two (ovatoxin-b and –c) of the five ovatoxins so far known in the toxin profile and a different relative abundance of the other toxins. The last aspect that was studied in this thesis regards the toxin biosythesis. In fact, toxins produced (palytoxin-like compounds) or supposed to be produced (brevetoxin-like compounds) by O. cf. ovata and F. japonica, respectively, are polyketides, which are highly oxygenated compounds synthesized by complex enzymes known as polyketide synthase (PKS) enzymes. These enzymes are multi-domain complexes that structurally and functionally resemble the fatty acid synthases (FASs). This work reports the first study of PKS proteins in the dinoflagellates O. cf. ovata, C. monotis and in the raphidophyte F. japonica. For the first time some PKSs were identified in these species, confirming the presence of PKS proteins predicted by the in silico translation of the transcripts found in K. brevis also in other species. The identification of O. cf. ovata PKSs and the localization of the palytoxin-like compounds produced by this dinoflagellate in a similar location (chloroplast) as that observed for other dinoflagellate and cyanobacterial toxins provides some indication that these proteins may be involved in polyketide biosynthesis. However, their potential function as fatty acid synthases cannot be ruled out, as plant fatty acid synthesis also occurs within chloroplasts. This last hypothesis is also supported by the fact that in all the investigated species, and in particular in F. japonica, PKS proteins were present. Therefore, these results provide an important contribution to the study of the polyketides and of the involvement of PKS proteins in the toxin biosynthesis.
Resumo:
The Vrancea region, at the south-eastern bend of the Carpathian Mountains in Romania, represents one of the most puzzling seismically active zones of Europe. Beside some shallow seismicity spread across the whole Romanian territory, Vrancea is the place of an intense seismicity with the presence of a cluster of intermediate-depth foci placed in a narrow nearly vertical volume. Although large-scale mantle seismic tomographic studies have revealed the presence of a narrow, almost vertical, high-velocity body in the upper mantle, the nature and the geodynamic of this deep intra-continental seismicity is still questioned. High-resolution seismic tomography could help to reveal more details in the subcrustal structure of Vrancea. Recent developments in computational seismology as well as the availability of parallel computing now allow to potentially retrieve more information out of seismic waveforms and to reach such high-resolution models. This study was aimed to evaluate the application of a full waveform inversion tomography at regional scale for the Vrancea lithosphere using data from the 1999 six months temporary local network CALIXTO. Starting from a detailed 3D Vp, Vs and density model, built on classical travel-time tomography together with gravity data, I evaluated the improvements obtained with the full waveform inversion approach. The latter proved to be highly problem dependent and highly computational expensive. The model retrieved after the first two iterations does not show large variations with respect to the initial model but remains in agreement with previous tomographic models. It presents a well-defined downgoing slab shape high velocity anomaly, composed of a N-S horizontal anomaly in the depths between 40 and 70km linked to a nearly vertical NE-SW anomaly from 70 to 180km.
Resumo:
Higher gauge theory arises naturally in superstring theory, but many of its features remain obscure. In this thesis, after an exposition of the bacis tools in local higher gauge theory, a higher gauge Chern-Simons model is defined. We discuss the classical equations of motion as well as the behaviour of the gauge anomaly. We perform canonical quantization and we introduce two possible quantization schemes for the model. We also expound higher parallel transport in higher gauge theory, and we speculate that it can provide Wilson surfaces as topological observables for the higher gauge Chern-Simons theory.
Towards the 3D attenuation imaging of active volcanoes: methods and tests on real and simulated data
Resumo:
The purpose of my PhD thesis has been to face the issue of retrieving a three dimensional attenuation model in volcanic areas. To this purpose, I first elaborated a robust strategy for the analysis of seismic data. This was done by performing several synthetic tests to assess the applicability of spectral ratio method to our purposes. The results of the tests allowed us to conclude that: 1) spectral ratio method gives reliable differential attenuation (dt*) measurements in smooth velocity models; 2) short signal time window has to be chosen to perform spectral analysis; 3) the frequency range over which to compute spectral ratios greatly affects dt* measurements. Furthermore, a refined approach for the application of spectral ratio method has been developed and tested. Through this procedure, the effects caused by heterogeneities of propagation medium on the seismic signals may be removed. The tested data analysis technique was applied to the real active seismic SERAPIS database. It provided a dataset of dt* measurements which was used to obtain a three dimensional attenuation model of the shallowest part of Campi Flegrei caldera. Then, a linearized, iterative, damped attenuation tomography technique has been tested and applied to the selected dataset. The tomography, with a resolution of 0.5 km in the horizontal directions and 0.25 km in the vertical direction, allowed to image important features in the off-shore part of Campi Flegrei caldera. High QP bodies are immersed in a high attenuation body (Qp=30). The latter is well correlated with low Vp and high Vp/Vs values and it is interpreted as a saturated marine and volcanic sediments layer. High Qp anomalies, instead, are interpreted as the effects either of cooled lava bodies or of a CO2 reservoir. A pseudo-circular high Qp anomaly was detected and interpreted as the buried rim of NYT caldera.