2 resultados para Borrobol Tephra
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
A full set of geochemical and Sr, Nd and Pb isotope data both on bulk-rock and mineral samples is provided for volcanic rocks representative of the whole stratigraphic succession of Lipari Island in the Aeolian archipelago. These data, together with petrographic observations and melt/fluid inclusion investigations from the literature, give outlines on the petrogenesis and evolution of magmas through the magmatic and eruptive history of Lipari. This is the result of nine successive Eruptive Epochs developing between 271 ka and historical times, as derived from recentmost volcanological and stratigraphic studies, combined with available radiometric ages and correlation of tephra layers and marine terrace deposits. These Eruptive Epochs are characterized by distinctive vents partly overlapping in space and time, mostly under control of the main regional tectonic trends (NNW-SSE, N-S and minor E-W). A large variety of lava flows, scoriaceous deposits, lava domes, coulees and pyroclastics are emplaced, ranging in composition through time from calcalkaline (CA) and high-K (HKCA) basaltic andesites to rhyolites. CA and HKCA basaltic andesitic to dacitic magmas were erupted between 271 and 81 ka (Eruptive Epochs 1-6) from volcanic edifices located along the western coast of the island (and subordinately the eastern Monterosa) and the M.Chirica and M.S.Angelo stratocones. These mafic to intermediate magmas mainly evolved through AFC and RAFC processes, involving fractionation of mafic phases, assimilation of wall rocks and mixing with newly injected mafic magmas. Following a 40 ka-long period of volcanic quiescence, the rhyolitic magmas were lately erupted from eruptive vents located in the southern and north-eastern sectors of Lipari between 40 ka and historical times (Eruptive Epochs 7-9). They are suggested to derive from the previous mafic to intermediate melts through AFC processes. During the early phases of rhyolitic magmatism (Eruptive Epochs 7-8), enclaves-rich rocks and banded pumices, ranging in composition from HKCA dacites to low-SiO2 rhyolites were erupted, representing the products of magma mixing between fresh mafic magmas and the fractionated rhyolitic melts. The interaction of mantle-derived magmas with the crust represents an essential process during the whole magmatic hystory of Lipari, and is responsible for the wide range of observed geochemical and isotopic variations. The crustal contribution was particularly important during the intermediate phases of activity of Lipari when the cordierite-bearing lavas were erupted from the M. S.Angelo volcano (Eruptive Epoch 5, 105 ka). These lavas are interpreted as the result of mixing and subsequent hybridization of mantle-derived magmas, akin to the ones characterizing the older phases of activity of Lipari (Eruptive Epochs 1-4), and crustal anatectic melts derived from dehydration-melting reactions of metapelites in the lower crust. A comparison between the adjacent islands of Lipari and Vulcano outlines that their mafic to intermediate magmas seem to be genetically connected and derive from a similar mantle source affected by different degrees of partial melting (and variable extent of crustal assimilation) producing either the CA magmas of Lipari (higher degrees) or the HKCA to SHO magmas of Vulcano (lower degrees). On a regional scale, the most primitive rocks (SiO2<56%, MgO>3.5%) of Lipari, Vulcano, Salina and Filicudi are suggested to derive from a similar MORB-like source, variably metasomatized by aqueous fluids coming from the slab and subordinately by the additions of sediments.
Resumo:
This is a multidisciplinary study of the Brown Tuffs (BT) ash deposits of the Aeolian Islands in northern Sicily and representing the most voluminous and widely distributed tephra deposit in this region. A large dataset of major and minor elements of the BT glass has defined a range from K-series basaltic-andesites and trachy-andesites through to tephri-phonolites and trachytes that is consistent with the Vulcano magmatic system. Combined with stratigraphic information and new radiocarbon ages, four stratigraphic macro-units are defined: the Lower (80-56 ky; LBT), Intermediate (56-27 ky; IBT), Intermediate-upper (26-24 ky; IBT-upper) and Upper BT (24-6 ky; UBT). Glass compositional data provide constraints on proximal-distal correlations of the BT with deep-sea tephra layers in the Tyrrhenian and Adriatic Seas and new insights on the definition of the dispersal area of the BT eruptions. Sedimentological evidence of massive to stratified deposits and shear-related structures, coupled with grain-size and componentry analyses, have allowed to interpret the BT as the result of laterally-spreading, concentrated ash-rich PDCs, with a high potential of erosion of the substratum. Shear-structures similar to those observed in the field in the BT deposits have been reproduced by small-medium scale laboratory experiments carried out on ash granular flows, which have also allowed to describe the behaviour of ash-rich PDcs and their mobility depending on variations of slope-ratio, grain size and flow channelization. The resulting integrated dataset provides a contribution to the knowledge of the BT eruptions and insights on long-term hazard assessment in the study area. The eruptive dynamics of the BT may have a role in characterizing the whole magmatic system of the La Fossa Caldera on Vulcano, in the light of the geochemical link highlighted between the UBT macrounit and the early products of the La Fossa cone.