3 resultados para Body fluids Examination
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis was aimed at investigating the physical-chemical properties and the behaviour in physiological environment of two classes of bioceramics: calcium silicate-based dental cements and alumina-based femoral heads for hip joint prostheses. The material characterization was performed using spectroscopic techniques such as that allow to obtain information on the molecular structure of the species and phases present in the analyzed samples. Raman, infrared and fluorescence spectroscopy was principally used. Calcium silicate cements, such as MTA (Mineral Trioxide Aggregate), are hydraulic materials that can set in presence of water: this characteristic makes them suitable for oral surgery and in particular as root-end filling materials. With the aim to improve the properties of commercial MTA cements, several MTA-based experimental formulations have been tested with regard to bioactivity (i.e. apatite forming ability) upon ageing in simulated body fluids. The formation of a bone-like apatite layer may support the integration in bone tissue and represents an essential requirement for osteoconduction and osteoinduction. The spectroscopic studies demonstrated that the experimental materials under study had a good bioactivity and were able to remineralize demineralized dentin. . Bioceramics thanks to their excellent mechanical properties and chemical resistance, are widely used as alternative to polymer (UHMWPE) and metal alloys (Cr-Co) for hip-joint prostesis. In order to investigate the in vivo wear mechanisms of three different generations of commercial bioceramics femoral heads (Biolox®, Biolox® forte, and Biolox® delta), fluorescence and Raman spectroscopy were used to investigate the surface properties and residual stresses of retrieved implants. Spectroscopic results suggested different wear mechanisms in the three sets of retrievals. Since Biolox® delta is a relatively recent material, the Raman results on its retrievals has been reported for the first time allowing to validate the in vitro ageing protocols proposed in the literature to simulate the effects of the in vivo wear.
Resumo:
Introduction. Glycomic analysis allows investigating on the global glycome within body fluids (as serum/plasma), this could eventually lead to identify new types of disease biomarkers, or as in this study, biomarkers of human aging studying specific aging models. Recent studies demonstrated that the plasma N-glycome is modified during human aging, suggesting that measurements of log-ratio of two serum/plasma N-glycans (NGA2F and NA2F), named GlycoAge test could provide a non-invasive biomarker of aging. Down syndrome (DS) is a genetic disorder in which multiple major aspects of senescent phenotype occur much earlier than in healthy age-matched subjects and has been often defined as an accelerated aging syndrome. The aim of this study was to compare plasma N-glycome of patients affected by DS with age- and sex matched non-affected controls, represented by their siblings (DSS), in order to assess if DS is characterized by a specific N-glycomic pattern. Therefore, in order to investigate if N-glycans changes that occur in DS were able to reveal an accelerated aging in DS patients, we enrolled the mothers (DSM) of the DS and DSS, representing the non-affected control group with a different chronological age respect to DS. We applied two different N-glycomics approaches on the same samples: first, in order to study the complete plasma N-glycome we applied a new high-sensitive protocol based on a MALDI-TOF-MS approach, second, we used DSA-FACE technology. Results: MALDI-TOF/MS analysis detected a specific N-glycomics signature for DS, characterized by an increase of fucosylated and bisecting species. Moreover, in DS the abundance of agalactosylated (as NA2F) species was similar or higher than their mothers. The measurement of GlycoAge test with DSA-FACE, validated also by MALDI-TOF, demonstrated a strongly association with age, moreover in DS, it’s value was similar to their mothers, and significantly higher than their age- and sex matched not-affected siblings
Resumo:
Spinal cord injury (SCI) results not only in paralysis; but it is also associated with a range of autonomic dysregulation that can interfere with cardiovascular, bladder, bowel, temperature, and sexual function. The entity of the autonomic dysfunction is related to the level and severity of injury to descending autonomic (sympathetic) pathways. For many years there was limited awareness of these issues and the attention given to them by the scientific and medical community was scarce. Yet, even if a new system to document the impact of SCI on autonomic function has recently been proposed, the current standard of assessment of SCI (American Spinal Injury Association (ASIA) examination) evaluates motor and sensory pathways, but not severity of injury to autonomic pathways. Beside the severe impact on quality of life, autonomic dysfunction in persons with SCI is associated with increased risk of cardiovascular disease and mortality. Therefore, obtaining information regarding autonomic function in persons with SCI is pivotal and clinical examinations and laboratory evaluations to detect the presence of autonomic dysfunction and quantitate its severity are mandatory. Furthermore, previous studies demonstrated that there is an intimate relationship between the autonomic nervous system and sleep from anatomical, physiological, and neurochemical points of view. Although, even if previous epidemiological studies demonstrated that sleep problems are common in spinal cord injury (SCI), so far only limited polysomnographic (PSG) data are available. Finally, until now, circadian and state dependent autonomic regulation of blood pressure (BP), heart rate (HR) and body core temperature (BcT) were never assessed in SCI patients. Aim of the current study was to establish the association between the autonomic control of the cardiovascular function and thermoregulation, sleep parameters and increased cardiovascular risk in SCI patients.