2 resultados para Biological Phenomena.

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the last few years, a great deal of interest has risen concerning the applications of stochastic methods to several biochemical and biological phenomena. Phenomena like gene expression, cellular memory, bet-hedging strategy in bacterial growth and many others, cannot be described by continuous stochastic models due to their intrinsic discreteness and randomness. In this thesis I have used the Chemical Master Equation (CME) technique to modelize some feedback cycles and analyzing their properties, including experimental data. In the first part of this work, the effect of stochastic stability is discussed on a toy model of the genetic switch that triggers the cellular division, which malfunctioning is known to be one of the hallmarks of cancer. The second system I have worked on is the so-called futile cycle, a closed cycle of two enzymatic reactions that adds and removes a chemical compound, called phosphate group, to a specific substrate. I have thus investigated how adding noise to the enzyme (that is usually in the order of few hundred molecules) modifies the probability of observing a specific number of phosphorylated substrate molecules, and confirmed theoretical predictions with numerical simulations. In the third part the results of the study of a chain of multiple phosphorylation-dephosphorylation cycles will be presented. We will discuss an approximation method for the exact solution in the bidimensional case and the relationship that this method has with the thermodynamic properties of the system, which is an open system far from equilibrium.In the last section the agreement between the theoretical prediction of the total protein quantity in a mouse cells population and the observed quantity will be shown, measured via fluorescence microscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of the bio-recognition phenomena behind a biological process is nowadays considered a useful tool to deeply understand physiological mechanisms allowing the discovery of novel biological target and the development of new lead candidates. Moreover, understanding this kind of phenomena can be helpful in characterizing absorption, distribution, metabolism, elimination and toxicity properties of a new drug (ADMET parameters). Recent estimations show that about half of all drugs in development fail to make it to the market because of ADMET deficiencies; thus a rapid determination of ADMET parameters in early stages of drug discovery would save money and time, allowing to choose the better compound and to eliminate any losers. The monitoring of drug binding to plasma proteins is becoming essential in the field of drug discovery to characterize the drug distribution in human body. Human serum albumin (HSA) is the most abundant protein in plasma playing a fundamental role in the transport of drugs, metabolites and endogenous factors; so the study of the binding mechanism to HSA has become crucial to the early characterization of the pharmacokinetic profile of new potential leads. Furthermore, most of the distribution experiments carried out in vivo are performed on animals. Hence it is interesting to determine the binding of new compounds to albumins from different species to evaluate the reliability of extrapolating the distribution data obtained in animals to humans. It is clear how the characterization of interactions between proteins and drugs determines a growing need of methodologies to study any specific molecular event. A wide variety of biochemical techniques have been applied to this purpose. High-performance liquid affinity chromatography, circular dichroism and optical biosensor represent three techniques that can be able to elucidate the interaction of a new drug with its target and with others proteins that could interfere with ADMET parameters.