2 resultados para BRCA mutation

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic lethality represents an anticancer strategy that targets tumor specific gene defects. One of the most studied application is the use of PARP inhibitors (e.g. olaparib) in BRCA1/2-less cancer cells. In BRCA2-defective tumors, olaparib (OLA) inhibits DNA single-strand break repair, while BRCA2 mutations hamper homologous recombination (HR) repair. The simultaneous impairment of those pathways leads BRCA-less cells to death by synthetic lethality. The projects described in this thesis were aimed at extending the use of OLA in cancer cells that do not carry a mutation in BRCA2 by combining this drug with compounds that could mimic a BRCA-less environment via HR inhibition. We demonstrated the effectiveness of our “fully small-molecule induced synthetic lethality” by using two different approaches. In the direct approach (Project A), we identified a series of neo-synthesized compounds (named RAD51-BRCA2 disruptors) that mimic BRCA2 mutations by disrupting the RAD51-BRCA2 interaction and thus the HR pathway. Compound ARN 24089 inhibited HR in human pancreatic adenocarcinoma cell line and triggered synthetic lethality by synergizing with OLA. Interestingly, the observed synthetic lethality was triggered by tackling two biochemically different mechanisms: enzyme inhibition (PARP) and protein-protein disruption (RAD51-BRCA2). In the indirect approach (Project B), we inhibited HR by interfering with the cellular metabolism through inhibition of LDH activity. The obtained data suggest an LDH-mediated control on HR that can be exerted by regulating either the energy supply needed to this repair mechanism or the expression level of genes involved in DNA repair. LDH inhibition also succeeded in increasing the efficiency of OLA in BRCA-proficient cell lines. Although preliminary, these results highlight a complex relationship between metabolic reactions and the control of DNA integrity. Both the described projects proved that our “fully small-molecule-induced synthetic lethality” approach could be an innovative approach to unmet oncological needs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of molecular criteria into the classification of diffuse gliomas has added interesting practical implications to glioma management. This has created a new clinical need for correlating imaging characteristics with glioma genotypes, also known as radiogenomics or imaging genomics. Whilst many studies have primarily focused on the use of advanced magnetic resonance imaging (MRI) techniques for radiogenomics purposes, conventional MRI sequences still remain the reference point in the study and characterization of brain tumours. Moreover, a different approach may rely on diffusion-weighted imaging (DWI) usage, which is considered a “conventional” sequence in line with recently published directions on glioma imaging. In a non-invasive way, it can provide direct insight into the microscopic physical properties of tissues. Considering that Isocitrate-Dehydrogenase gene mutations may reflect alterations in metabolism, cellularity, and angiogenesis, which may manifest characteristic features on an MRI, the identification of specific MRI biomarkers could be of great interest in managing patients with brain gliomas. My study aimed to evaluate the presence of specific MRI-derived biomarkers of IDH molecular status through conventional MRI and DWI sequences.