2 resultados para BIOFUEL

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microalgae are sun - light cell factories that convert carbon dioxide to biofuels, foods, feeds, and other bioproducts. The concept of microalgae cultivation as an integrated system in wastewater treatment has optimized the potential of the microalgae - based biofuel production. These microorganisms contains lipids, polysaccharides, proteins, pigments and other cell compounds, and their biomass can provide different kinds of biofuels such as biodiesel, biomethane and ethanol. The algal biomass application strongly depends on the cell composition and the production of biofuels appears to be economically convenient only in conjunction with wastewater treatment. The aim of this research thesis was to investigate a biological wastewater system on a laboratory scale growing a newly isolated freshwater microalgae, Desmodesmus communis, in effluents generated by a local wastewater reclamation facility in Cesena (Emilia Romagna, Italy) in batch and semi - continuous cultures. This work showed the potential utilization of this microorganism in an algae - based wastewater treatment; Desmodesmus communis had a great capacity to grow in the wastewater, competing with other microorganisms naturally present and adapting to various environmental conditions such as different irradiance levels and nutrient concentrations. The nutrient removal efficiency was characterized at different hydraulic retention times as well as the algal growth rate and biomass composition in terms of proteins, polysaccharides, total lipids and total fatty acids (TFAs) which are considered the substrate for biodiesel production. The biochemical analyses were coupled with the biomass elemental analysis which specified the amount of carbon and nitrogen in the algal biomass. Furthermore photosynthetic investigations were carried out to better correlate the environmental conditions with the physiology responses of the cells and consequently get more information to optimize the growth rate and the increase of TFAs and C/N ratio, cellular compounds and biomass parameter which are fundamental in the biomass energy recovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The urgent need for alternative solutions mitigating the impacts of human activities on the environment has strongly opened new challenges and opportunities in view of the energy transition. Indeed, the automotive industry is going through a revolutionary moment in its quest to reduce its carbon footprint, with biofuels being one of the viable alternatives. The use of different classes of biofuels as fuel additives/standalone components has attracted the attention of many researchers. Despite their beneficial effects, biofuel’s combustion can also result in the production of undesirable pollutants, requiring complete characterization of the phenomena occurring during their production and consumption. Industrial scale-up of biomass conversion is challenging owing to the complexity of its chemistry and transport phenomena involved in the process. In this view, the role of solid-phase and gas-phase chemistry is paramount. Thus, this study is devoted to detailed analysis of physical-chemical phenomena characterizing biomass pyrolysis and biofuel oxidation. The pyrolysis mechanism has been represented by 20 reactions whereas, the gas-phase kinetic models; manually upgraded model (KiBo_MU) and automated model (KiBo_AG), comprises 141 species and 453 reactions, and 631 species and 28329 reactions, respectively. The accuracy of the kinetic models was tested against experimental data and the models captured experimental trends very well. While the development and validation of detailed kinetic mechanisms is the main deliverable of this project, the realized procedure integrating schematic classifications with methodologies for the identification of common decomposition pathways and intermediates represents an additional source of novelty. Besides, the fundamentally oriented nature of the adopted method allows the identification of most relevant reactions and species under the operating conditions different industrial applications, paving the way for reduced kinetic mechanisms. Ultimately, the resulting detailed mechanisms can be used to integrate with more complex fluid dynamics model to accurately reproduce the behavior of real systems and reactors.