5 resultados para BENZOTHIOPYRANOINDAZOLE ANTICANCER ANALOGS

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the previous 10 years, global R&D expenditure in the pharmaceuticals and biotechnology sector has steadily increased, without a corresponding increase in output of new medicines. To address this situation, the biopharmaceutical industry's greatest need is to predict the failures at the earliest possible stage of the drug development process. A major key to reducing failures in drug screenings is the development and use of preclinical models that are more predictive of efficacy and safety in clinical trials. Further, relevant animal models are needed to allow a wider testing of novel hypotheses. Key to this is the developing, refining, and validating of complex animal models that directly link therapeutic targets to the phenotype of disease, allowing earlier prediction of human response to medicines and identification of safety biomarkers. Morehover, well-designed animal studies are essential to bridge the gap between test in cell cultures and people. Zebrafish is emerging, complementary to other models, as a powerful system for cancer studies and drugs discovery. We aim to investigate this research area designing a new preclinical cancer model based on the in vivo imaging of zebrafish embryogenesis. Technological advances in imaging have made it feasible to acquire nondestructive in vivo images of fluorescently labeled structures, such as cell nuclei and membranes, throughout early Zebrafishsh embryogenesis. This In vivo image-based investigation provides measurements for a large number of features at cellular level and events including nuclei movements, cells counting, and mitosis detection, thereby enabling the estimation of more significant parameters such as proliferation rate, highly relevant for investigating anticancer drug effects. In this work, we designed a standardized procedure for accessing drug activity at the cellular level in live zebrafish embryos. The procedure includes methodologies and tools that combine imaging and fully automated measurements of embryonic cell proliferation rate. We achieved proliferation rate estimation through the automatic classification and density measurement of epithelial enveloping layer and deep layer cells. Automatic embryonic cells classification provides the bases to measure the variability of relevant parameters, such as cell density, in different classes of cells and is finalized to the estimation of efficacy and selectivity of anticancer drugs. Through these methodologies we were able to evaluate and to measure in vivo the therapeutic potential and overall toxicity of Dbait and Irinotecan anticancer molecules. Results achieved on these anticancer molecules are presented and discussed; furthermore, extensive accuracy measurements are provided to investigate the robustness of the proposed procedure. Altogether, these observations indicate that zebrafish embryo can be a useful and cost-effective alternative to some mammalian models for the preclinical test of anticancer drugs and it might also provides, in the near future, opportunities to accelerate the process of drug discovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been proved that naphthalene diimide (NDI) derivatives display anticancer properties as intercalators and G-quadruplex-binding ligands, leading to DNA damage, senescence and down-regulation of oncogene expression. This thesis deals with the design and synthesis of disubstituted and tetrasubstituted NDI derivatives endowed with anticancer activity, interacting with DNA together with other targets implicated in cancer development. Disubstituted NDI compounds have been designed with the aim to provide potential multitarget directed ligands (MTDLs), in order to create molecules able to simultaneously interact with some of the different targets involved in this pathology. The most active compound, displayed antiproliferative activity in submicromolar range, especially against colon and prostate cancer cell lines, the ability to bind duplex and quadruplex DNA, to inhibit Taq polymerase and telomerase, to trigger caspase activation by a possible oxidative mechanism, to downregulate ERK 2 protein and to inhibit ERKs phosphorylation, without acting directly on microtubules and tubuline. Tetrasubstituted NDI compounds have been designed as G-quadruplex-binding ligands endowed with anticancer activity. In order to improve the cellular uptake of the lead compound, the N-methylpiperazine moiety have been replaced with different aromatic systems and methoxypropyl groups. The most interesting compound was 1d, which was able to interact with the G-quadruplexes both telomeric and in HSP90 promoter region, and it has been co-crystallized with the human telomeric G-quadruplex, to directly verify its ability to bind this kind of structure, and also to investigate its binding mode. All the morpholino substituted compounds show antiproliferative activity in submicromolar values mainly in pancreatic and lung cancer cell lines, and they show an improved biological profile in comparison with that of the lead compound. In conclusion, both these studies, may represent a promising starting point for the development of new interesting molecules useful for the treatment of cancer, underlining the versatility of the NDI scaffold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor is a lesion that may be formed by an abnormal growth of neoplastic cells. Many factors increase the risk of cancer and different targets are involved in tumor progression. Within this thesis, we have addressed two different biological targets, independently connected with tumor formation, e.g. Hsp90 and androgen receptor. The ATP-dependent chaperone Hsp90 is responsible for the conformational maturation and the renaturation of proteins. “Client” proteins are associated with the cancer hallmarks, as cell proliferation and tumor progression. Consequently, Hsp90 has evolved into promising anticancer target. Over the past decade, radicicol has been identified as potential anticancer agent targeting Hsp90, but it is not active in vivo. With that aim of obtaining radicicol-related derivatives, we developed the design and synthesis of new chalcones analogs. Chalcones, which are abundant in edible plants, own a diverse array of pharmacological activities and are considered a versatile scaffold for drug design. Antiproliferative assays and western blot analysis on the new compounds showed that some of those display an interesting cytotoxic effect and the ability to modulate Hsp90 client proteins expression. Androgen Receptor (AR) hypersensitivity plays crucial role in prostate cancer, which progression is stimulated by androgens. The therapy consists in a combination of surgical or chemical castration, along with antiandrogens treatment. Casodex® (bicalutamide), is the most widespread antiandrogen used in clinic. However, hormonal therapy is time-limited since many patients develop resistance. Commercially available antiandrogens show a common scaffold, e.g. two substituted aromatic rings linked by a linear or a cyclic spacer. With the aim of obtaining novel pure AR antagonists, we developed a new synthetic methodology, which allowed us to introduce, as linker between two suitably chosen aromatic rings, a triazole moiety. Preliminary data suggest that the herein reported new molecules generally decrease PSA expression, thus confirming their potential AR antagonistic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to contribute to the development of new multifunctional nanocarriers for improved encapsulation and delivery of anticancer and antiviral drugs. The work focused on water soluble and biocompatible oligosaccharides, the cyclodextrins (CyDs), and a new family of nanostructured, biodegradable carrier materials made of porous metal-organic frameworks (nanoMOFs). The drugs of choice were the anticancer doxorubicin (DOX), azidothymidine (AZT) and its phosphate derivatives and artemisinin (ART). DOX possesses a pharmacological drawback due to its self-aggregation tendency in water. The non covalent binding of DOX to a series of CyD derivatives, such as g-CyD, an epichlorohydrin crosslinked b-CyD polymer (pb-CyD) and a citric acid crosslinked g-CyD polymer (pg-CyD) was studied by UV visible absorption, circular dichroism and fluorescence. Multivariate global analysis of multiwavelength data from spectroscopic titrations allowed identification and characterization of the stable complexes. pg-CyD proved to be the best carrier showing both high association constants and ability to monomerize DOX. AZT is an important antiretroviral drug. The active form is AZT-triphosphate (AZT-TP), formed in metabolic paths of low efficiency. Direct administration of AZT-TP is limited by its poor stability in biological media. So the development of suitable carriers is highly important. In this context we studied the binding of some phosphorilated derivatives to nanoMOFs by spectroscopic methods. The results obtained with iron(III)-trimesate nanoMOFs allowed to prove that the binding of these drugs mainly occurs by strong iono-covalent bonds to iron(III) centers. On the basis of these and other results obtained in partner laboratories, it was possible to propose this highly versatile and “green” carrier system for delivery of phosphorylated nucleoside analogues. The interaction of DOX with nanoMOFs was also studied. Finally the binding of the antimalarial drug, artemisinin (ART) with two cyclodextrin-based carriers,the pb-CyD and a light responsive bis(b-CyD) host, was also studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer is a multifactorial disease characterized by a very complex etiology. Basing on its complex nature, a promising therapeutic strategy could be based by the “Multi-Target-Directed Ligand” (MTDL) approach, based on the assumption that a single molecule could hit several targets responsible for the pathology. Several agents acting on DNA are clinically used, but the severe deriving side effects limit their therapeutic application. G-quadruplex structures are DNA secondary structures located in key zones of human genome; targeting quadruplex structures could allow obtaining an anticancer therapy more free from side effects. In the last years it has been proved that epigenetic modulation can control the expression of human genes, playing a crucial role in carcinogenesis and, in particular, an abnormal expression of histone deacetylase enzymes are related to tumor onset and progression. This thesis deals with the design and synthesis of new naphthalene diimide (NDI) derivatives endowed with anticancer activity, interacting with DNA together with other targets implicated in cancer development, such as HDACs. NDI-polyamine and NDI-polyamine-hydroxamic acid conjugates have been designed with the aim to provide potential MTDLs, in order to create molecules able simultaneously to interact with different targets involved in this pathology, specifically the G-quadruplex structures and HDAC, and to exploit the polyamine transport system to get selectively into cancer cells. Macrocyclic NDIs have been designed with the aim to improve the quadruplex targeting profile of the disubstituted NDIs. These compounds proved the ability to induce a high and selective stabilization of the quadruplex structures, together with cytotoxic activities in the micromolar range. Finally, trisubstituted NDIs have been developed as G-quadruplex-binders, potentially effective against pancreatic adenocarcinoma. In conclusion, all these studies may represent a promising starting point for the development of new interesting molecules useful for the treatment of cancer, underlining the versatility of the NDI scaffold.